这期内容当中小编将会给大家带来有关go-zero 中怎样扛住流量冲击,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
不管是在单体服务中还是在微服务中,开发者为前端提供的API接口都是有访问上限的,当访问频率或者并发量超过其承受范围时候,我们就必须考虑限流来保证接口的可用性或者降级可用性。即接口也需要安装上保险丝,以防止非预期的请求对系统压力过大而引起的系统瘫痪。
go-zero
集成了开箱即用的 限流器 。其中内置了两种限流器,也对应两类使用场景:
种类 | 原理 | 场景 |
---|---|---|
periodlimit | 单位时间限制访问次数 | 需要强行限制数据的传输速率 |
tokenlimit | 令牌桶限流 | 限制数据的平均传输速率,同时允许某种程度的突发传输 |
const ( seconds = 1 total = 100 quota = 5 ) // New limiter l := NewPeriodLimit(seconds, quota, redis.NewRedis(s.Addr(), redis.NodeType), "periodlimit") // take source code, err := l.Take("first") if err != nil { logx.Error(err) return true } // switch val => process request switch code { case limit.OverQuota: logx.Errorf("OverQuota key: %v", key) return false case limit.Allowed: logx.Infof("AllowedQuota key: %v", key) return true case limit.HitQuota: logx.Errorf("HitQuota key: %v", key) // todo: maybe we need to let users know they hit the quota return false default: logx.Errorf("DefaultQuota key: %v", key) // unknown response, we just let the sms go return true }
go-zero
采取 滑动窗口 计数的方式,计算一段时间内对同一个资源的访问次数,如果超过指定的 limit
,则拒绝访问。当然如果你是在一段时间内访问不同的资源,每一个资源访问量都不超过 limit
,此种情况是允许大量请求进来的。
而在一个分布式系统中,存在多个微服务提供服务。所以当瞬间的流量同时访问同一个资源,如何让计数器在分布式系统中正常计数? 同时在计算资源访问时,可能会涉及多个计算,如何保证计算的原子性?
go-zero
借助 redis
的 incrby
做资源访问计数
采用 lua script
做整个窗口计算,保证计算的原子性
下面来看看 lua script
控制的几个关键属性:
argument | mean |
---|---|
key[1] | 访问资源的标示 |
ARGV[1] | limit => 请求总数,超过则限速。可设置为 QPS |
ARGV[2] | window大小 => 滑动窗口,用 ttl 模拟出滑动的效果 |
-- to be compatible with aliyun redis, -- we cannot use `local key = KEYS[1]` to reuse thekey local limit = tonumber(ARGV[1]) local window = tonumber(ARGV[2]) -- incrbt key 1 => key visis++ local current = redis.call("INCRBY", KEYS[1], 1) -- 如果是第一次访问,设置过期时间 => TTL = window size -- 因为是只限制一段时间的访问次数 if current == 1 then redis.call("expire", KEYS[1], window) return 1 elseif current < limit then return 1 elseif current == limit then return 2 else return 0 end
至于上述的 return code
,返回给调用方。由调用方来决定请求后续的操作:
return code | tag | call code | mean |
---|---|---|---|
0 | OverQuota | 3 | over limit |
1 | Allowed | 1 | in limit |
2 | HitQuota | 2 | hit limit |
下面这张图描述了请求进入的过程,以及请求触发 limit
时后续发生的情况:
如果在服务某个时间点,请求大批量打进来,periodlimit
短期时间内达到 limit
阈值,而且设置的时间范围还远远没有到达。后续请求的处理就成为问题。
periodlimit
中并没有处理,而是返回 code
。把后续请求的处理交给了开发者自己处理。
如果不做处理,那就是简单的将请求拒绝
如果需要处理这些请求,开发者可以借助 mq
将请求缓冲,减缓请求的压力
采用 tokenlimit
,允许暂时的流量冲击
上述就是小编为大家分享的go-zero 中怎样扛住流量冲击了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。