温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式

发布时间:2021-10-23 17:54:28 来源:亿速云 阅读:152 作者:iii 栏目:编程语言

本篇内容主要讲解“如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式”吧!

功能特性

华为场景识别服务支持对图片的场景内容进行分类并添加标注信息,如美食、花朵、绿植、猫、狗、厨房、山峰、洗衣机等102种场景,并基于识别到的信息,构建更智能的相册应用体验。

场景识别具有以下功能特性:

  • 多类场景识别 支持102种场景的识别,并持续增加。

  • 识别准确率高 可识别多种物品、场景,识别准确率高。

  • 识别响应速度快 毫秒级响应速度,并不断优化性能表现。

  • 集成简单高效 提供API接口和SDK包,方便客户集成,操作简单,减少开发成本。

应用场景

场景识别除了应用于建立智能相册、照片检索和分类外,还可以识别拍摄场景自动选择相应的场景滤镜和相机参数,帮助用户拍摄出更好看的照片。

开发代码

1 开发准备工作

1.1 配置AppGallery Connect。

在开发应用前,需要在AppGallery Connect中配置相关信息。 具体操作步骤,请参考下方链接: https://developer.huawei.com/consumer/cn/doc/development/HMSCore-Guides-V5/config-agc-0000001050990353-V5

1.2 配置HMS Core SDK的Maven仓地址,并完成本服务的SDK集成。

(1)打开Android Studio项目级“build.gradle”文件。

如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式 (2)添加HUAWEI agcp插件以及Maven代码库。

  • 在“allprojects > repositories”中配置HMS Core SDK的Maven仓地址。

  • 在“buildscript > repositories”中配置HMS Core SDK的Maven仓地址。

  • 如果App中添加了“agconnect-services.json”文件则需要在“buildscript > dependencies”中增加agcp配置。

buildscript {
    repositories {
        google()
        jcenter()
        maven {url 'https://developer.huawei.com/repo/'}
    }
    dependencies {
        ...
        classpath 'com.huawei.agconnect:agcp:1.4.1.300'
    }
}
  
allprojects {
    repositories {
        google()
        jcenter()
        maven {url 'https://developer.huawei.com/repo/'}
    }
}

2 开发代码

静态图片检测

2.1 创建场景识别检测器实例。

// 方式1:使用默认的参数配置。
MLSceneDetectionAnalyzer analyzer = MLSceneDetectionAnalyzerFactory.getInstance().getSceneDetectionAnalyzer();
// 方式2:按自定义配置创建场景识别分析器实例。
MLSceneDetectionAnalyzerSetting setting = new MLSceneDetectionAnalyzerSetting.Factory()
     // 设置场景识别可信度阈值。
     .setConfidence(confidence)
     .create();
MLSceneDetectionAnalyzer analyzer = MLSceneDetectionAnalyzerFactory.getInstance().getSceneDetectionAnalyzer(setting);

2.2 通过android.graphics.Bitmap构造MLFrame,支持的图片格式包括:jpg/jpeg/png/bmp。

MLFrame frame = new MLFrame.Creator().setBitmap(bitmap).create();

2.3 进行场景识别。

// 方式1:同步识别。
SparseArray<MLSceneDetection> results = analyzer.analyseFrame(frame);
// 方式2:异步识别。
Task<List<MLSceneDetection>> task = analyzer.asyncAnalyseFrame(frame);
task.addOnSuccessListener(new OnSuccessListener<List<MLSceneDetection>>() {
    public void onSuccess(List<MLSceneDetection> result) {
        // 场景识别成功的处理逻辑。
    }})
    .addOnFailureListener(new OnFailureListener() {
        public void onFailure(Exception e) {
            // 场景识别识别失败的处理逻辑。
            // failure.
            if (e instanceof MLException) {
                MLException mlException = (MLException)e;
                // 获取错误码,开发者可以对错误码进行处理,根据错误码进行差异化的页面提示。
                int errorCode = mlException.getErrCode();
                // 获取报错信息,开发者可以结合错误码,快速定位问题。
                String errorMessage = mlException.getMessage();
            } else {
                // 其他异常。
        }
    }
});

2.4 检测完成,停止分析器,释放检测资源。

if (analyzer != null) {
    analyzer.stop();
}

视频流检测

开发者可以自行处理视频流,将视频流转化为MLFrame对象,再按静态图像检测的方法进行场景识别。

如果开发者调用的是同步检测接口,也可以使用SDK内置的LensEngine类实现视频流场景识别。示例代码如下:

3.1 创建场景识别分析器,只支持创建端侧场景识别分析器。

MLSceneDetectionAnalyzer analyzer = MLSceneDetectionAnalyzerFactory.getInstance().getSceneDetectionAnalyzer();

3.2 开发者创建识别结果处理类“SceneDetectionAnalyzerTransactor”,该类实现MLAnalyzer.MLTransactor<T>接口,使用该接口中的transactResult方法获取检测结果并实现具体业务。

public class SceneDetectionAnalyzerTransactor implements MLAnalyzer.MLTransactor<MLSceneDetection> {
    @Override
    public void transactResult(MLAnalyzer.Result<MLSceneDetection> results) {
        SparseArray<MLSceneDetection> items = results.getAnalyseList();
        // 开发者根据需要处理识别结果,需要注意,这里只对检测结果进行处理。
        // 不可调用ML Kit提供的其他检测相关接口。
    }
    @Override
    public void destroy() {
        // 检测结束回调方法,用于释放资源等。
    }
}

3.3 设置识别结果处理器,实现分析器与结果处理器的绑定。

analyzer.setTransactor(new SceneDetectionAnalyzerTransactor());
// 创建LensEngine,该类由ML Kit SDK提供,用于捕捉相机动态视频流并传入分析器。
Context context = this.getApplicationContext();
LensEngine lensEngine = new LensEngine.Creator(context, this.analyzer)
    .setLensType(LensEngine.BACK_LENS)
    .applyDisplayDimension(1440, 1080)
    .applyFps(30.0f)
    .enableAutomaticFocus(true)
    .create();

3.4 调用run方法,启动相机,读取视频流,进行识别。

// 请自行实现SurfaceView控件的其他逻辑。
SurfaceView mSurfaceView = findViewById(R.id.surface_view);
try {
    lensEngine.run(mSurfaceView.getHolder());
} catch (IOException e) {
    // 异常处理逻辑。
}

3.5 检测完成,停止分析器,释放检测资源。

if (analyzer != null) {
    analyzer.stop();
}
if (lensEngine != null) {
    lensEngine.release();
}

DEMO展示

如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式

到此,相信大家对“如何使用超简单集成HMS Core ML Kit场景识别,构建相册管理新模式”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI