温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python怎么实现快速去水印

发布时间:2021-11-25 15:05:22 来源:亿速云 阅读:275 作者:iii 栏目:大数据

本篇内容介绍了“Python怎么实现快速去水印”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

Python怎么实现快速去水印

图片去水印原理

1、标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0;

2、使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果;

3、使用inpaint方法,把噪声的mask作为参数,推理并修复图片。

去掉右下角的水印步骤

1、从原图片,截取右下角部分,另存为新图片;

2、识别水印,颜色值为:[200, 200, 200]~[255, 255, 255]

3、去掉水印,还原图片;

4、把原图片、去掉水印的新图片,进行重叠合并;

代码实现

import cv2
import numpy as np
from PIL import Image
import os

dir = os.getcwd()
path = "1.jpg"
newPath = "new.jpg"
img=cv2.imread(path,1)
hight,width,depth=img.shape[0:3]

#截取
cropped = img[int(hight*0.8):hight, int(width*0.7):width]  # 裁剪坐标为[y0:y1, x0:x1]
cv2.imwrite(newPath, cropped)
imgSY = cv2.imread(newPath,1)

#图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0
thresh = cv2.inRange(imgSY,np.array([200,200,200]),np.array([250,250,250]))
#创建形状和尺寸的结构元素
kernel = np.ones((3,3),np.uint8)
#扩展待修复区域
hi_mask = cv2.dilate(thresh,kernel,iterations=10)
specular = cv2.inpaint(imgSY,hi_mask,5,flags=cv2.INPAINT_TELEA)
cv2.imwrite(newPath, specular)

#覆盖图片
imgSY = Image.open(newPath)
img = Image.open(path)
img.paste(imgSY, (int(width*0.7),int(hight*0.8),width,hight))
img.save(newPath)

“Python怎么实现快速去水印”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI