温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

mlflow升级的方法是什么

发布时间:2022-01-07 15:45:34 来源:亿速云 阅读:144 作者:iii 栏目:大数据

这篇“mlflow升级的方法是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“mlflow升级的方法是什么”文章吧。

升级以及准备

参照之前mlflow的搭建使用 ,我们先建立mlflow 1.4.0 和mlflow 1.11.0的conda环境
假设你已经建立好了对应的conda环境,且分别为mlflow-1.4.0 和mlflow-1.11.0 则执行:

conda activate mlflow-1.11.0

参考mlflow db upgrade ,执行

mlflow db upgrade mysql://user:passwd@host:port/db
如:mlflow db upgrade mysql://root:root@localhost/mlflow

其中

名词解释
user数据库的用户名
passwd数据库的密码
host数据库的主机地址
port数据库的端口,如默认为3306则可以省略
db数据库的database

如果执行成功则会看到如下输出信息:

2020/11/02 10:24:50 INFO mlflow.store.db.utils: Updating database tables
INFO  [alembic.runtime.migration] Context impl MySQLImpl.
INFO  [alembic.runtime.migration] Will assume non-transactional DDL.
INFO  [alembic.runtime.migration] Running upgrade 2b4d017a5e9b -> cfd24bdc0731, Update run status constraint with killed
INFO  [alembic.runtime.migration] Running upgrade cfd24bdc0731 -> 0a8213491aaa, drop_duplicate_killed_constraint
WARNI [0a8213491aaa_drop_duplicate_killed_constraint_py] Failed to drop check constraint. Dropping check constraints may not be supported by your SQL database. Exception content: (MySQLdb._exceptions.ProgrammingError) (1064, "You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'CHECK status' at line 1")
[SQL: ALTER TABLE runs DROP CHECK status]
(Background on this error at: http://sqlalche.me/e/f405)
INFO  [alembic.runtime.migration] Running upgrade 0a8213491aaa -> 728d730b5ebd, add registered model tags table
INFO  [alembic.runtime.migration] Running upgrade 728d730b5ebd -> 27a6a02d2cf1, add model version tags table
INFO  [alembic.runtime.migration] Running upgrade 27a6a02d2cf1 -> 84291f40a231, add run_link to model_version

如果此时再在mlflow 1.4.0的环境下 再执行:

mlflow server \
      --backend-store-uri mysql://root:root@localhost/mlflow \
      --host 0.0.0.0 -p 5002 \
      --default-artifact-root s3://mlflow

就会报错:

2020/11/02 10:25:41 ERROR mlflow.cli: Error initializing backend store
2020/11/02 10:25:41 ERROR mlflow.cli: Detected out-of-date database schema (found version 84291f40a231, but expected 2b4d017a5e9b). Take a backup of your database, then run 'mlflow db upgrade <database_uri>' to migrate your database to the latest schema. NOTE: schema migration may result in database downtime - please consult your database's documentation for more detail.
Traceback (most recent call last):
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/cli.py", line 263, in server
    initialize_backend_stores(backend_store_uri, default_artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 97, in initialize_backend_stores
    _get_tracking_store(backend_store_uri, default_artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 83, in _get_tracking_store
    _tracking_store = _tracking_store_registry.get_store(store_uri, artifact_root)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/tracking/_tracking_service/registry.py", line 37, in get_store
    return builder(store_uri=store_uri, artifact_uri=artifact_uri)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/server/handlers.py", line 54, in _get_sqlalchemy_store
    return SqlAlchemyStore(store_uri, artifact_uri)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/store/tracking/sqlalchemy_store.py", line 99, in __init__
    mlflow.store.db.utils._verify_schema(self.engine)
  File "/Users/ljh/opt/miniconda3/envs/mlflow-1.4.0-dev/lib/python3.6/site-packages/mlflow/store/db/utils.py", line 52, in _verify_schema
    "more detail." % (current_rev, head_revision))
mlflow.exceptions.MlflowException: Detected out-of-date database schema (found version 84291f40a231, but expected 2b4d017a5e9b). Take a backup of your database, then run 'mlflow db upgrade <database_uri>' to migrate your database to the latest schema. NOTE: schema migration may result in database downtime - please consult your database's documentation for more detail.

这说明升级成功

此时再在mlflow 1.11.0的conda环境下执行:

 mlflow server \
      --backend-store-uri mysql://root:root@localhost/mlflow \
      --host 0.0.0.0 -p 5003 \
      --default-artifact-root s3://mlflow

就能正常的看到页面,这样mlflow 从1.4.0到1.11.0的升级就完成了

注意事项

如果是线上操作,则先备份数据库,因为该升级不一定能保证升级成功,如升级失败,直接从备份数据库恢复或者参照失败处理进行处理

以上就是关于“mlflow升级的方法是什么”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI