这篇文章主要讲解了“Flink的Split怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Flink的Split怎么使用”吧!
Split算子:将数据流切分成多个数据流(已过时,并且不能二次切分,不建议使用)
示例环境
java.version: 1.8.x
flink.version: 1.11.1
示例数据源 (项目码云下载)
Flink 系例 之 搭建开发环境与数据
Split.java
package com.flink.examples.functions;
import com.flink.examples.DataSource;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SplitStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.ArrayList;
import java.util.List;
/**
* @Description Split算子:将数据流切分成多个数据流(已过时,并且不能二次切分,不建议使用)
*/
public class Split {
/**
* 遍历集合,将数据流切分成多个流并打印
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
List<Tuple3<String, String, Integer>> tuple3List = DataSource.getTuple3ToList();
//Datastream
DataStream<Tuple3<String, String, Integer>> dataStream = env.fromCollection(tuple3List);
//按性别进行拆分
//flink.1.11.1显示SplitStream类过时,推荐用keyBy的方式进行窗口处理或SideOutput侧输出流处理;注意,使用split切分后的流,不可二次切分,否则会抛异常
SplitStream<Tuple3<String, String, Integer>> split = dataStream.split(new OutputSelector<Tuple3<String, String, Integer>>() {
@Override
public Iterable<String> select(Tuple3<String, String, Integer> value) {
List<String> output = new ArrayList<String>();
if (value.f1.equals("man")) {
output.add("man");
} else {
output.add("girl");
}
return output;
}
});
//查询指定名称的数据流
DataStream<Tuple4<String, String, Integer, String>> dataStream1 = split.select("man")
.map(new MapFunction<Tuple3<String, String, Integer>, Tuple4<String, String, Integer, String>>() {
@Override
public Tuple4<String, String, Integer, String> map(Tuple3<String, String, Integer> t3) throws Exception {
return Tuple4.of(t3.f0, t3.f1, t3.f2, "男");
}
});
DataStream<Tuple4<String, String, Integer, String>> dataStream2 = split.select("girl")
.map(new MapFunction<Tuple3<String, String, Integer>, Tuple4<String, String, Integer, String>>() {
@Override
public Tuple4<String, String, Integer, String> map(Tuple3<String, String, Integer> t3) throws Exception {
return Tuple4.of(t3.f0, t3.f1, t3.f2, "女");
}
});
//打印:男
dataStream1.print();
//打印:女
dataStream2.print();
env.execute("flink Split job");
}
}
打印结果
(张三,man,20,男)
(李四,girl,24,女)
(王五,man,29,男)
(刘六,girl,32,女)
(伍七,girl,18,女)
(吴八,man,30,男)
感谢各位的阅读,以上就是“Flink的Split怎么使用”的内容了,经过本文的学习后,相信大家对Flink的Split怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/437309/blog/4672922