本篇内容介绍了“python中pip install和conda install的区别是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
大部分情况下没什么区别。基本上,我更喜欢用pip,因为国内用pip网速比conda快哈哈,即便是用了国内源的情况下。
正式一点地说,pip和conda功能相似,但仍然有一些区别,conda官方就有文章专门说这个:https://www.anaconda.com/blog/understanding-conda-and-pip
pip是用来安装python包的,安装的是python wheel或者源代码的包。从源码安装的时候需要有编译器的支持,pip也不会去支持python语言之外的依赖项。
conda是用来安装conda package,虽然大部分conda包是python的,但它支持了不少非python语言写的依赖项,比如mkl cuda这种c c++写的包。然后,conda安装的都是编译好的二进制包,不需要你自己编译。所以,pip有时候系统环境没有某个编译器可能会失败,conda不会。这导致了conda装东西的体积一般比较大,尤其是mkl这种,动不动几百兆甚至一G多。
然后,conda功能其实比pip更多。pip几乎就是个安装包的软件,conda是个环境管理的工具。conda自己可以用来创建环境,pip不能,需要依赖virtualenv之类的。意味着你能用conda安装python解释器,pip不行。这一点我觉得是conda很有优势的地方,用conda env可以很轻松地管理很多个版本的python,pip不行。
然后是一些可能不太容易察觉的地方。conda和pip对于环境依赖的处理不同,总体来讲,conda比pip更加严格,conda会检查当前环境下所有包之间的依赖关系,pip可能对之前安装的包就不管了。这样做的话,conda基本上安上了就能保证工作,pip有时候可能装上了也不work。不过我个人感觉这个影响不大,毕竟主流包的支持都挺不错的,很少遇到broken的情况。这个区别也导致了安装的时候conda算依赖项的时间比pip多很多,而且重新安装的包也会更多(会选择更新旧包的版本)。
最后,pip的包跟conda不完全重叠,有些包只能通过其中一个装。
“python中pip install和conda install的区别是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。