这期内容当中小编将会给大家带来有关MLlib协同过滤ALS算法的示例分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
ALS算法做协同过滤大致就是建立用户商品矩阵,根据评分值以解数独的形式解出来
import java.text.SimpleDateFormat import java.util.Date import org.apache.spark.mllib.recommendation.{ALS, Rating } import org.apache.spark.{SparkContext, SparkConf} /** * Created by hadoop on 2015/7/20. */ object MLlibCF { def main(args: Array[String]) { val time = new SimpleDateFormat("MMddHHmm").format(new Date()) val sparkConf = new SparkConf().setAppName("MLlibCF-"+time) sparkConf.set("mapreduce.framework.name", "yarn") sparkConf.set("spark.rdd.compress", "true")//是否需要压缩序列化的rdd分区,牺牲cpu时间提高空间利用率 sparkConf.set("spark.serializer","org.apache.spark.serializer.KryoSerializer")//配置序列化的接口 sparkConf.set("spark.storage.memoryFraction", "0.2") sparkConf.set("spark.scheduler.mode", "FAIR") sparkConf.set("spark.ui.port", "4042") sparkConf.set("spark.akka.frameSize", "100") val sc = new SparkContext(sparkConf) val data = sc.textFile("hdfs://namenode:9000/data/test_in/mahout1.txt", 1) //对读取的文件进行预处理,并放入Rating容器中 val ratings = data.map(_.split(",") match{ case(Array(user, product, rate)) => Rating(user.toInt, product.toInt, rate.toDouble) }) //需要求出的值 val user1 = sc.parallelize(List("1,105","1,106","2,105","2,107","3,102")).map( _.split(",") match { case (Array(user, product)) => (user.toInt, product.toInt) }) val rank = 10 val numIterations = 20 //建立ALS模型 val model = ALS.train(ratings, rank, numIterations, 0.01) //读取需要的值 val predictions = model.predict(user1).map{ case Rating(user, product, rate) => ((user, product), rate) } predictions.saveAsTextFile("hdfs://10.207.0.217:9000/data/test_out/zk/MLlib-"+time) } }
上述就是小编为大家分享的MLlib协同过滤ALS算法的示例分析了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。