温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

numpy random模块有哪些

发布时间:2021-11-30 09:48:57 来源:亿速云 阅读:157 作者:小新 栏目:云计算

这篇文章主要为大家展示了“ numpy random模块有哪些”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“ numpy random模块有哪些”这篇文章吧。

一下方法都要加np.random.前缀
1.简单随机数据

namedescribe
rand(d0, d1, …, dn)Random values in a given shape.
randn(d0, d1, …, dn)Return a sample (or samples) from the “standard normal” distribution.
randint(low[, high, size, dtype])Return random integers from low (inclusive) to high (exclusive).
random_integers(low[, high, size])Random integers of type np.int between low and high, inclusive.
random_sample([size])Return random floats in the half-open interval [0.0, 1.0).
random([size])Return random floats in the half-open interval [0.0, 1.0).
ranf([size])Return random floats in the half-open interval [0.0, 1.0).
sample([size])Return random floats in the half-open interval [0.0, 1.0).
choice(a[, size, replace, p])Generates a random sample from a given 1-D array
bytes(length)Return random bytes.

2.生成随机分布

namedescribe
beta(a, b[, size])Draw samples from a Beta distribution.
binomial(n, p[, size])Draw samples from a binomial distribution.
chisquare(df[, size])Draw samples from a chi-square distribution.
dirichlet(alpha[, size])Draw samples from the Dirichlet distribution.
exponential([scale, size])Draw samples from an exponential distribution.
f(dfnum, dfden[, size])Draw samples from an F distribution.
gamma(shape[, scale, size])Draw samples from a Gamma distribution.
geometric(p[, size])Draw samples from the geometric distribution.
gumbel([loc, scale, size])Draw samples from a Gumbel distribution.
hypergeometric(ngood, nbad, nsample[, size])Draw samples from a Hypergeometric distribution.
laplace([loc, scale, size])Draw samples from the Laplace or double exponential distribution with specified logistic([loc, scale, size]) Draw samples from a logistic distribution.
lognormal([mean, sigma, size])Draw samples from a log-normal distribution.
logseries(p[, size])Draw samples from a logarithmic series distribution.
multinomial(n, pvals[, size])Draw samples from a multinomial distribution.
multivariate_normal(mean, cov[, size])Draw random samples from a multivariate normal distribution.
negative_binomial(n, p[, size])Draw samples from a negative binomial distribution.
noncentral_chisquare(df, nonc[, size])Draw samples from a noncentral chi-square distribution.
noncentral_f(dfnum, dfden, nonc[, size])Draw samples from the noncentral F distribution.
normal([loc, scale, size])Draw random samples from a normal (Gaussian) distribution.
pareto(a[, size])Draw samples from a Pareto II or Lomax distribution with specified shape.
poisson([lam, size])Draw samples from a Poisson distribution.
power(a[, size])Draws samples in [0, 1] from a power distribution with positive exponent a - 1.
rayleigh([scale, size])Draw samples from a Rayleigh distribution.
standard_cauchy([size])Draw samples from a standard Cauchy distribution with mode = 0.
standard_exponential([size])Draw samples from the standard exponential distribution.
standard_gamma(shape[, size])Draw samples from a standard Gamma distribution.
standard_normal([size])Draw samples from a standard Normal distribution (mean=0, stdev=1).
standard_t(df[, size])Draw samples from a standard Student’s t distribution with df degrees of freedom.
triangular(left, mode, right[, size])Draw samples from the triangular distribution over the interval [left, right].
uniform([low, high, size])Draw samples from a uniform distribution.
vonmises(mu, kappa[, size])Draw samples from a von Mises distribution.
wald(mean, scale[, size])Draw samples from a Wald, or inverse Gaussian, distribution.
weibull(a[, size])Draw samples from a Weibull distribution.
zipf(a[, size])Draw samples from a Zipf distribution.

3.重排

namedescribe
shuffle(x)Modify a sequence in-place by shuffling its contents.
permutation(x)Randomly permute a sequence, or return a permuted range.

以上是“ numpy random模块有哪些”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI