这期内容当中小编将会给大家带来有关虚拟化原理及QEMU启动过程是怎样的,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
第一步,获取到kvm句柄 kvmfd = open("/dev/kvm", O_RDWR); 第二步,创建虚拟机,获取到虚拟机句柄。 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); 第三步,为虚拟机映射内存,还有其他的PCI,信号处理的初始化。 ioctl(kvmfd, KVM_SET_USER_MEMORY_REGION, &mem); 第四步,将虚拟机镜像映射到内存,相当于物理机的boot过程,把镜像映射到内存。 第五步,创建vCPU,并为vCPU分配内存空间。 ioctl(kvmfd, KVM_CREATE_VCPU, vcpuid); vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KVM_GET_VCPU_MMAP_SIZE, 0); 第五步,创建vCPU个数的线程并运行虚拟机。 ioctl(kvm->vcpus->vcpu_fd, KVM_RUN, 0); 第六步,线程进入循环,并捕获虚拟机退出原因,做相应的处理。 这里的退出并不一定是虚拟机关机,虚拟机如果遇到IO操作,访问硬件设备,缺页中断等都会退出执行,退出执行可以理解为将CPU执行上下文返回到QEMU。
open("/dev/kvm") ioctl(KVM_CREATE_VM) ioctl(KVM_CREATE_VCPU) for (;;) { ioctl(KVM_RUN) switch (exit_reason) { case KVM_EXIT_IO: /* ... */ case KVM_EXIT_HLT: /* ... */ } }
关于KVM_CREATE_VM参数的描述,创建的VM是没有cpu和内存的,需要QEMU进程利用mmap系统调用映射一块内存给VM的描述符,其实也就是给VM创建内存的过程。
KVM ioctl接口文档
下面是一个KVM的简单demo,其目的在于加载 code 并使用KVM运行起来.
这是一个at&t的8086汇编,.code16表示他是一个16位的,当然直接运行是运行不起来的,为了让他运行起来,我们可以用KVM提供的API,将这个程序看做一个最简单的操作系统,让其运行起来。
这个汇编的作用是输出al寄存器的值到0x3f8端口。对于x86架构来说,通过IN/OUT指令访问。PC架构一共有65536个8bit的I/O端口,组成64KI/O地址空间,编号从0~0xFFFF。连续两个8bit的端口可以组成一个16bit的端口,连续4个组成一个32bit的端口。I/O地址空间和CPU的物理地址空间是两个不同的概念,例如I/O地址空间为64K,一个32bit的CPU物理地址空间是4G。
最终程序理想的输出应该是,al,bl的值后面KVM初始化的时候有赋值。
4\n (并不直接输出\n,而是换了一行),hlt 指令表示虚拟机退出
.globl _start .code16 _start: mov $0x3f8, %dx add %bl, %al add $'0', %al out %al, (%dx) mov $'\n', %al out %al, (%dx) hlt
我们编译一下这个汇编,得到一个 Bin.bin 的二进制文件
as -32 bin.S -o bin.o ld -m elf_i386 --oformat binary -N -e _start -Ttext 0x10000 -o Bin.bin bin.o
查看一下二进制格式
➜ demo1 hexdump -C bin.bin 00000000 ba f8 03 00 d8 04 30 ee b0 0a ee f4 |......0.....| 0000000c 对应了下面的code数组,这样直接加载字节码就不需要再从文件加载了 const uint8_t code[] = { 0xba, 0xf8, 0x03, /* mov $0x3f8, %dx */ 0x00, 0xd8, /* add %bl, %al */ 0x04, '0', /* add $'0', %al */ 0xee, /* out %al, (%dx) */ 0xb0, '\n', /* mov $'\n', %al */ 0xee, /* out %al, (%dx) */ 0xf4, /* hlt */ };
#include <err.h> #include <fcntl.h> #include <linux/kvm.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> int main(void) { int kvm, vmfd, vcpufd, ret; const uint8_t code[] = { 0xba, 0xf8, 0x03, /* mov $0x3f8, %dx */ 0x00, 0xd8, /* add %bl, %al */ 0x04, '0', /* add $'0', %al */ 0xee, /* out %al, (%dx) */ 0xb0, '\n', /* mov $'\n', %al */ 0xee, /* out %al, (%dx) */ 0xf4, /* hlt */ }; uint8_t *mem; struct kvm_sregs sregs; size_t mmap_size; struct kvm_run *run; // 获取 kvm 句柄 kvm = open("/dev/kvm", O_RDWR | O_CLOEXEC); if (kvm == -1) err(1, "/dev/kvm"); // 确保是正确的 API 版本 ret = ioctl(kvm, KVM_GET_API_VERSION, NULL); if (ret == -1) err(1, "KVM_GET_API_VERSION"); if (ret != 12) errx(1, "KVM_GET_API_VERSION %d, expected 12", ret); // 创建一虚拟机 vmfd = ioctl(kvm, KVM_CREATE_VM, (unsigned long)0); if (vmfd == -1) err(1, "KVM_CREATE_VM"); // 为这个虚拟机申请内存,并将代码(镜像)加载到虚拟机内存中 mem = mmap(NULL, 0x1000, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); if (!mem) err(1, "allocating guest memory"); memcpy(mem, code, sizeof(code)); // 为什么从 0x1000 开始呢,因为页表空间的前4K是留给页表目录 struct kvm_userspace_memory_region region = { .slot = 0, .guest_phys_addr = 0x1000, .memory_size = 0x1000, .userspace_addr = (uint64_t)mem, }; // 设置 KVM 的内存区域 ret = ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, ®ion); if (ret == -1) err(1, "KVM_SET_USER_MEMORY_REGION"); // 创建虚拟CPU vcpufd = ioctl(vmfd, KVM_CREATE_VCPU, (unsigned long)0); if (vcpufd == -1) err(1, "KVM_CREATE_VCPU"); // 获取 KVM 运行时结构的大小 ret = ioctl(kvm, KVM_GET_VCPU_MMAP_SIZE, NULL); if (ret == -1) err(1, "KVM_GET_VCPU_MMAP_SIZE"); mmap_size = ret; if (mmap_size < sizeof(*run)) errx(1, "KVM_GET_VCPU_MMAP_SIZE unexpectedly small"); // 将 kvm run 与 vcpu 做关联,这样能够获取到kvm的运行时信息 run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpufd, 0); if (!run) err(1, "mmap vcpu"); // 获取特殊寄存器 ret = ioctl(vcpufd, KVM_GET_SREGS, &sregs); if (ret == -1) err(1, "KVM_GET_SREGS"); // 设置代码段为从地址0处开始,我们的代码被加载到了0x0000的起始位置 sregs.cs.base = 0; sregs.cs.selector = 0; // KVM_SET_SREGS 设置特殊寄存器 ret = ioctl(vcpufd, KVM_SET_SREGS, &sregs); if (ret == -1) err(1, "KVM_SET_SREGS"); // 设置代码的入口地址,相当于32位main函数的地址,这里16位汇编都是由0x1000处开始。 // 如果是正式的镜像,那么rip的值应该是类似引导扇区加载进来的指令 struct kvm_regs regs = { .rip = 0x1000, .rax = 2, // 设置 ax 寄存器初始值为 2 .rbx = 2, // 同理 .rflags = 0x2, // 初始化flags寄存器,x86架构下需要设置,否则会粗错 }; ret = ioctl(vcpufd, KVM_SET_REGS, ®s); if (ret == -1) err(1, "KVM_SET_REGS"); // 开始运行虚拟机,如果是qemu-kvm,会用一个线程来执行这个vCPU,并加载指令 while (1) { // 开始运行虚拟机 ret = ioctl(vcpufd, KVM_RUN, NULL); if (ret == -1) err(1, "KVM_RUN"); // 获取虚拟机退出原因 switch (run->exit_reason) { case KVM_EXIT_HLT: puts("KVM_EXIT_HLT"); return 0; // 汇编调用了 out 指令,vmx 模式下不允许执行这个操作,所以 // 将操作权切换到了宿主机,切换的时候会将上下文保存到VMCS寄存器 // 后面CPU虚拟化会讲到这部分 // 因为虚拟机的内存宿主机能够直接读取到,所以直接在宿主机上获取到 // 虚拟机的输出(out指令),这也是后面PCI设备虚拟化的一个基础,DMA模式的PCI设备 case KVM_EXIT_IO: if (run->io.direction == KVM_EXIT_IO_OUT && run->io.size == 1 && run->io.port == 0x3f8 && run->io.count == 1) putchar(*(((char *)run) + run->io.data_offset)); else errx(1, "unhandled KVM_EXIT_IO"); break; case KVM_EXIT_FAIL_ENTRY: errx(1, "KVM_EXIT_FAIL_ENTRY: hardware_entry_failure_reason = 0x%llx", (unsigned long long)run->fail_entry.hardware_entry_failure_reason); case KVM_EXIT_INTERNAL_ERROR: errx(1, "KVM_EXIT_INTERNAL_ERROR: suberror = 0x%x", run->internal.suberror); default: errx(1, "exit_reason = 0x%x", run->exit_reason); } } }
编译并运行这个demo
gcc -g demo.c -o demo ➜ demo1 ./demo 4 KVM_EXIT_HLT
IBM的徐同学有做过介绍,在此基础上我再详细介绍一下qemu-kvm的启动过程。
.globl _start .code16 _start: xorw %ax, %ax # 将 ax 寄存器清零 loop1: out %ax, $0x10 # 像 0x10 的端口输出 ax 的内容,at&t汇编的操作数和Intel的相反。 inc %ax # ax 值加一 jmp loop1 # 继续循环
这个汇编的作用就是一直不停的向0x10端口输出一字节的值。
从main函数开始说起
int main(int argc, char **argv) { int ret = 0; // 初始化kvm结构体 struct kvm *kvm = kvm_init(); if (kvm == NULL) { fprintf(stderr, "kvm init fauilt\n"); return -1; } // 创建VM,并分配内存空间 if (kvm_create_vm(kvm, RAM_SIZE) < 0) { fprintf(stderr, "create vm fault\n"); return -1; } // 加载镜像 load_binary(kvm); // only support one vcpu now kvm->vcpu_number = 1; // 创建执行现场 kvm->vcpus = kvm_init_vcpu(kvm, 0, kvm_cpu_thread); // 启动虚拟机 kvm_run_vm(kvm); kvm_clean_vm(kvm); kvm_clean_vcpu(kvm->vcpus); kvm_clean(kvm); }
第一步,调用kvm_init() 初始化了 kvm 结构体。先来看看怎么定义一个简单的kvm。
struct kvm { int dev_fd; // /dev/kvm 的句柄 int vm_fd; // GUEST 的句柄 __u64 ram_size; // GUEST 的内存大小 __u64 ram_start; // GUEST 的内存起始地址, // 这个地址是qemu emulator通过mmap映射的地址 int kvm_version; struct kvm_userspace_memory_region mem; // slot 内存结构,由用户空间填充、 // 允许对guest的地址做分段。将多个slot组成线性地址 struct vcpu *vcpus; // vcpu 数组 int vcpu_number; // vcpu 个数 };
初始化 kvm 结构体。
struct kvm *kvm_init(void) { struct kvm *kvm = malloc(sizeof(struct kvm)); kvm->dev_fd = open(KVM_DEVICE, O_RDWR); // 打开 /dev/kvm 获取 kvm 句柄 if (kvm->dev_fd < 0) { perror("open kvm device fault: "); return NULL; } kvm->kvm_version = ioctl(kvm->dev_fd, KVM_GET_API_VERSION, 0); // 获取 kvm API 版本 return kvm; }
第二步+第三步,创建虚拟机,获取到虚拟机句柄,并为其分配内存。
int kvm_create_vm(struct kvm *kvm, int ram_size) { int ret = 0; // 调用 KVM_CREATE_KVM 接口获取 vm 句柄 kvm->vm_fd = ioctl(kvm->dev_fd, KVM_CREATE_VM, 0); if (kvm->vm_fd < 0) { perror("can not create vm"); return -1; } // 为 kvm 分配内存。通过系统调用. kvm->ram_size = ram_size; kvm->ram_start = (__u64)mmap(NULL, kvm->ram_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); if ((void *)kvm->ram_start == MAP_FAILED) { perror("can not mmap ram"); return -1; } // kvm->mem 结构需要初始化后传递给 KVM_SET_USER_MEMORY_REGION 接口 // 只有一个内存槽 kvm->mem.slot = 0; // guest 物理内存起始地址 kvm->mem.guest_phys_addr = 0; // 虚拟机内存大小 kvm->mem.memory_size = kvm->ram_size; // 虚拟机内存在host上的用户空间地址,这里就是绑定内存给guest kvm->mem.userspace_addr = kvm->ram_start; // 调用 KVM_SET_USER_MEMORY_REGION 为虚拟机分配内存。 ret = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &(kvm->mem)); if (ret < 0) { perror("can not set user memory region"); return ret; } return ret; }
接下来就是load_binary把二进制文件load到虚拟机的内存中来,在第一个demo中我们是直接把字节码放到了内存中,这里模拟镜像加载步骤,把二进制文件加载到内存中。
void load_binary(struct kvm *kvm) { int fd = open(BINARY_FILE, O_RDONLY); // 打开这个二进制文件(镜像) if (fd < 0) { fprintf(stderr, "can not open binary file\n"); exit(1); } int ret = 0; char *p = (char *)kvm->ram_start; while(1) { ret = read(fd, p, 4096); // 将镜像内容加载到虚拟机的内存中 if (ret <= 0) { break; } printf("read size: %d", ret); p += ret; } }
加载完镜像后,需要初始化vCPU,以便能够运行镜像内容
struct vcpu { int vcpu_id; // vCPU id,vCPU int vcpu_fd; // vCPU 句柄 pthread_t vcpu_thread; // vCPU 线程句柄 struct kvm_run *kvm_run; // KVM 运行时结构,也可以看做是上下文 int kvm_run_mmap_size; // 运行时结构大小 struct kvm_regs regs; // vCPU的寄存器 struct kvm_sregs sregs; // vCPU的特殊寄存器 void *(*vcpu_thread_func)(void *); // 线程执行函数 }; struct vcpu *kvm_init_vcpu(struct kvm *kvm, int vcpu_id, void *(*fn)(void *)) { // 申请vcpu结构 struct vcpu *vcpu = malloc(sizeof(struct vcpu)); // 只有一个 vCPU,所以这里只初始化一个 vcpu->vcpu_id = 0; // 调用 KVM_CREATE_VCPU 获取 vCPU 句柄,并关联到kvm->vm_fd(由KVM_CREATE_VM返回) vcpu->vcpu_fd = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, vcpu->vcpu_id); if (vcpu->vcpu_fd < 0) { perror("can not create vcpu"); return NULL; } // 获取KVM运行时结构大小 vcpu->kvm_run_mmap_size = ioctl(kvm->dev_fd, KVM_GET_VCPU_MMAP_SIZE, 0); if (vcpu->kvm_run_mmap_size < 0) { perror("can not get vcpu mmsize"); return NULL; } printf("%d\n", vcpu->kvm_run_mmap_size); // 将 vcpu_fd 的内存映射给 vcpu->kvm_run结构。相当于一个关联操作 // 以便能够在虚拟机退出的时候获取到vCPU的返回值等信息 vcpu->kvm_run = mmap(NULL, vcpu->kvm_run_mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->vcpu_fd, 0); if (vcpu->kvm_run == MAP_FAILED) { perror("can not mmap kvm_run"); return NULL; } // 设置线程执行函数 vcpu->vcpu_thread_func = fn; return vcpu; }
最后一步,以上工作就绪后,启动虚拟机。
void kvm_run_vm(struct kvm *kvm) { int i = 0; for (i = 0; i < kvm->vcpu_number; i++) { // 启动线程执行 vcpu_thread_func 并将 kvm 结构作为参数传递给线程 if (pthread_create(&(kvm->vcpus->vcpu_thread), (const pthread_attr_t *)NULL, kvm->vcpus[i].vcpu_thread_func, kvm) != 0) { perror("can not create kvm thread"); exit(1); } } pthread_join(kvm->vcpus->vcpu_thread, NULL); }
启动虚拟机其实就是创建线程,并执行相应的线程回调函数。
线程回调函数在kvm_init_vcpu的时候传入
void *kvm_cpu_thread(void *data) { // 获取参数 struct kvm *kvm = (struct kvm *)data; int ret = 0; // 设置KVM的参数 kvm_reset_vcpu(kvm->vcpus); while (1) { printf("KVM start run\n"); // 启动虚拟机,此时的虚拟机已经有内存和CPU了,可以运行起来了。 ret = ioctl(kvm->vcpus->vcpu_fd, KVM_RUN, 0); if (ret < 0) { fprintf(stderr, "KVM_RUN failed\n"); exit(1); } // 前文 kvm_init_vcpu 函数中,将 kvm_run 关联了 vCPU 结构的内存 // 所以这里虚拟机退出的时候,可以获取到 exit_reason,虚拟机退出原因 switch (kvm->vcpus->kvm_run->exit_reason) { case KVM_EXIT_UNKNOWN: printf("KVM_EXIT_UNKNOWN\n"); break; case KVM_EXIT_DEBUG: printf("KVM_EXIT_DEBUG\n"); break; // 虚拟机执行了IO操作,虚拟机模式下的CPU会暂停虚拟机并 // 把执行权交给emulator case KVM_EXIT_IO: printf("KVM_EXIT_IO\n"); printf("out port: %d, data: %d\n", kvm->vcpus->kvm_run->io.port, *(int *)((char *)(kvm->vcpus->kvm_run) + kvm->vcpus->kvm_run->io.data_offset) ); sleep(1); break; // 虚拟机执行了memory map IO操作 case KVM_EXIT_MMIO: printf("KVM_EXIT_MMIO\n"); break; case KVM_EXIT_INTR: printf("KVM_EXIT_INTR\n"); break; case KVM_EXIT_SHUTDOWN: printf("KVM_EXIT_SHUTDOWN\n"); goto exit_kvm; break; default: printf("KVM PANIC\n"); goto exit_kvm; } } exit_kvm: return 0; } void kvm_reset_vcpu (struct vcpu *vcpu) { if (ioctl(vcpu->vcpu_fd, KVM_GET_SREGS, &(vcpu->sregs)) < 0) { perror("can not get sregs\n"); exit(1); } // #define CODE_START 0x1000 /* sregs 结构体 x86 struct kvm_sregs { struct kvm_segment cs, ds, es, fs, gs, ss; struct kvm_segment tr, ldt; struct kvm_dtable gdt, idt; __u64 cr0, cr2, cr3, cr4, cr8; __u64 efer; __u64 apic_base; __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64]; }; */ // cs 为code start寄存器,存放了程序的起始地址 vcpu->sregs.cs.selector = CODE_START; vcpu->sregs.cs.base = CODE_START * 16; // ss 为堆栈寄存器,存放了堆栈的起始位置 vcpu->sregs.ss.selector = CODE_START; vcpu->sregs.ss.base = CODE_START * 16; // ds 为数据段寄存器,存放了数据开始地址 vcpu->sregs.ds.selector = CODE_START; vcpu->sregs.ds.base = CODE_START *16; // es 为附加段寄存器 vcpu->sregs.es.selector = CODE_START; vcpu->sregs.es.base = CODE_START * 16; // fs, gs 同样为段寄存器 vcpu->sregs.fs.selector = CODE_START; vcpu->sregs.fs.base = CODE_START * 16; vcpu->sregs.gs.selector = CODE_START; // 为vCPU设置以上寄存器的值 if (ioctl(vcpu->vcpu_fd, KVM_SET_SREGS, &vcpu->sregs) < 0) { perror("can not set sregs"); exit(1); } // 设置寄存器标志位 vcpu->regs.rflags = 0x0000000000000002ULL; // rip 表示了程序的起始指针,地址为 0x0000000 // 在加载镜像的时候,我们直接将binary读取到了虚拟机的内存起始位 // 所以虚拟机开始的时候会直接运行binary vcpu->regs.rip = 0; // rsp 为堆栈顶 vcpu->regs.rsp = 0xffffffff; // rbp 为堆栈底部 vcpu->regs.rbp= 0; if (ioctl(vcpu->vcpu_fd, KVM_SET_REGS, &(vcpu->regs)) < 0) { perror("KVM SET REGS\n"); exit(1); } }
运行一下结果,可以看到当虚拟机执行了指令 out %ax, $0x10
的时候,会引起虚拟机的退出,这是CPU虚拟化里面将要介绍的特殊机制。
宿主机获取到虚拟机退出的原因后,获取相应的输出。这里的步骤就类似于IO虚拟化,直接读取IO模块的内存,并输出结果。
➜ kvmsample git:(master) ✗ ./kvmsample read size: 712288 KVM start run KVM_EXIT_IO out port: 16, data: 0 KVM start run KVM_EXIT_IO out port: 16, data: 1 KVM start run KVM_EXIT_IO out port: 16, data: 2 KVM start run KVM_EXIT_IO out port: 16, data: 3 KVM start run KVM_EXIT_IO out port: 16, data: 4 ...
虚拟机的启动过程基本上可以这么总结:
创建kvm句柄->创建vm->分配内存->加载镜像到内存->启动线程执行KVM_RUN。从这个虚拟机的demo可以看出,虚拟机的内存是由宿主机通过mmap调用映射给虚拟机的,而vCPU是宿主机的一个线程,这个线程通过设置相应的vCPU的寄存器指定了虚拟机的程序加载地址后,开始运行虚拟机的指令,当虚拟机执行了IO操作后,CPU捕获到中断并把执行权又交回给宿主机。
当然真实的qemu-kvm比这个复杂的多,包括设置很多IO设备的MMIO,设置信号处理等。
上述就是小编为大家分享的虚拟化原理及QEMU启动过程是怎样的了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。