温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用MISO进行可变剪切的分析

发布时间:2021-11-10 16:50:57 来源:亿速云 阅读:427 作者:柒染 栏目:大数据

如何使用MISO进行可变剪切的分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

MISO是一款经典的可变剪切分析工具,和rmats类似,该软件也支持对可变剪切事件进行定量和差异分析。

这个软件支持exon和transcript两种水平的可变剪切分析,在rmats的文章中,我们也提到了rmats是从exon水平给出的可变剪切结果,因为二代测序读长短的特点,无法有效得到转录本全长,从exon水平得到的结果更加的准确,而且阳性结果更容易通过RT-PCR验证出来,但是无法详细的探究某个基因不同isoform之间的变化;transcript水平直接给出不同isoform间的定量和差异,能有效的探究基因不同isofrm的变化情况,但是结果准确性较差。

该软件是一个python包,直接通过pip就可以安装,分析的pipeline如下

如何使用MISO进行可变剪切的分析

1. 对参考基因组的GFF文件建索引

对于transcript水平的分析而言,只需要提供转录本的GFF文件,可以从Ensembl等数据库下载参考基因组的gtf文件,然后自己转换成GFF3格式;对于exon水平而言,需要提供已知的可变剪切事件的GFF格式文件,示意如下

chr1  SE      gene    4772649 4775821 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-;Name=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-
chr1  SE      mRNA    4772649 4775821 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-
chr1  SE      mRNA    4772649 4775821 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.B;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-
chr1  SE      exon    4775654 4775821 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A.up;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A
chr1  SE      exon    4774032 4774186 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A.se;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A
chr1  SE      exon    4772649 4772814 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A.dn;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.A
chr1  SE      exon    4775654 4775821 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.B.up;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.B
chr1  SE      exon    4772649 4772814 .       -       .       ID=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.B.dn;Parent=chr1:4775654:4775821:-@chr1:4774032:4774186:-@chr1:4772649:4772814:-.B

第二列表示可变剪切的类型,以外显子跳跃为例,ID的格式如下

chr1:4775654:4775821:-@chr1:4774032:4774186:@chr1:4772649:4772814

包含了用@符号隔开的3个外显子,中间的exon的跳过的外显子,第一个为上游的外显子,第二个为下游的外显子,对应如下示意图中的3个exon

如何使用MISO进行可变剪切的分析

transcript水平的GFF文件从数据库中下载即可,而exon水平的GFF文件是需要自己先识别可变剪切的不同isoform,然后整理得到的,对于人和小鼠等常见物种,官网提供了exon水平的GFF文件,链接如下

https://miso.readthedocs.io/en/fastmiso/annotation.html

准备好GFF文件之后,就可以建立索引了,命令如下

index_gff --index ensGene.gff3 index_db

index_db为索引保存的目录。

2. 运行miso

运行miso需要第一步建好的索引以及样本对应的bam文件,该bam文件必须是经过排序处理的,而且有对应的bai索引,对于双端数据,用法如下

miso --run
index_db \
algin.sorted.bam \  
--output-dir out_dir \
--read-len 150 \
--paired-end 250 15 \
--settings-filename miso_settings.txt

read-len是reads的平均长度,paired-end代表插入片段长度的平均值和方差,miso_settings.txt是配置文件,内容如下

[data]
filter_results = True
min_event_reads = 20
strand = fr-unstranded
[sampler]
burn_in = 500
lag = 10
num_iters = 5000
num_processors = 4

配置文件中的参数很多,就不一一解释了,每个参数的意义请参考官方文档。
通过上述方式得到的结果可以直接用于后续的差异分析,但是这个结果不利于我们查看,所以官方提供了汇总程序,用法如下

summarize_miso \
--summarize-samples \
raw_out/ \
summary_out1
3. 样本间的差异分析

进行样本间差异分析的代码如下

compare_miso --compare-samples control case/ comparisons/

在输出目录,会生成一个后缀为bf的文件。

4. 对结果进行过滤

用法如下

filter_events \
--filter  case_vs_control.miso_bf \
--num-inc 1 \
--num-exc 1 \
--num-sum-inc-exc 10 \
--delta-psi 0.20 \
--bayes-factor 10 \
--output-dir filter_dir
5. 可视化

用法如下

sashimi_plot \
--plot-event "chr1:7778:7924:-@chr1:7096:7605:-@chr1:6717:6918:-" \
index_db/ \
sashimi_plot_settings.txt  \
--output-dir out_dir

sashimi_plot_settings.txt是配置文件,其中设置了样本的bam文件和可变剪切的输出结果,示例如下

[data]
# directory where BAM files are
bam_prefix = ./test-data/bam-data/
# directory where MISO output is
miso_prefix = ./test-data/miso-data/

bam_files = [
    "heartWT1.sorted.bam",
    "heartWT2.sorted.bam",
    "heartKOa.sorted.bam",
    "heartKOb.sorted.bam"]

miso_files = [
    "heartWT1",
    "heartWT2",
    "heartKOa",
    "heartKOb"]

[plotting]
# Dimensions of figure to be plotted (in inches)
fig_width = 7
fig_height = 5
# Factor to scale down introns and exons by
intron_scale = 30
exon_scale = 4
# Whether to use a log scale or not when plotting
logged = False
font_size = 6

# Max y-axis
ymax = 150

# Whether to plot posterior distributions inferred by MISO
show_posteriors = True

# Whether to show posterior distributions as bar summaries
bar_posteriors = False

# Whether to plot the number of reads in each junction
number_junctions = True

resolution = .5
posterior_bins = 40
gene_posterior_ratio = 5

# List of colors for read denisites of each sample
colors = [
    "#CC0011",
    "#CC0011",
    "#FF8800",
    "#FF8800"]

# Number of mapped reads in each sample
# (Used to normalize the read density for RPKM calculation)
coverages = [
    6830944,
    14039751,
    4449737,
    6720151]

# Bar color for Bayes factor distribution
# plots (--plot-bf-dist)
# Paint them blue
bar_color = "b"

# Bayes factors thresholds to use for --plot-bf-dist
bf_thresholds = [0, 1, 2, 5, 10, 20]

最终会产生如下所示的结果

如何使用MISO进行可变剪切的分析

这种图称之为sashimi plot , 是一种专用于可变剪切可视化的图表,上述示意图表示的是一个外显子跳跃事件在不同样本中的表达情况,左下方是GFF文件中共的exon结构,左上方是每个样本中比对上exon的reads的可视化,采用了RPKM表示,不同剪切方式用曲线链接,曲线上标记的是比对上该区域的reads数目,不同分组的样本用不同颜色表示,右侧的图片是样本中对应的可变剪切的表达量值。

从这种图中,可以直观的看到两组样本间的可变剪切表达有无差异,上图中heartWT组中的表达量高于heartKO组。

实际分析时,由于需要手动整理可变剪切isofrom对应的gff文件,所以使用的难度较大,但是其提供的可视化功能是非常值得借鉴的。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI