温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

云函数SCF与对象存储实现WordCount算法的过程

发布时间:2021-10-12 14:26:21 来源:亿速云 阅读:130 作者:柒染 栏目:云计算

本篇文章为大家展示了云函数SCF与对象存储实现WordCount算法的过程,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

将尝试通过 MapReduce 模型实现一个简单的 WordCount 算法,区别于传统使用 Hadoop 等大数据框架,使用云函数 SCF 与对象存储 COS 来实现。

MapReduce 在维基百科中的解释如下:

MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于 1TB)的并行运算。概念「Map(映射)」和「Reduce(归纳)」,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。

通过这段描述,我们知道,MapReduce 是面向大数据并行处理的计算模型、框架和平台,在传统学习中,通常会在 Hadoop 等分布式框架下进行 MapReduce 相关工作,随着云计算的逐渐发展,各个云厂商也都先后推出了在线的 MapReduce 业务。

理论基础

在开始之前,我们根据 MapReduce 的要求,先绘制一个简单的流程图:

云函数SCF与对象存储实现WordCount算法的过程

在这个结构中,我们需要 2 个云函数分别作 Mapper 和 Reducer;以及 3 个对象存储的存储桶,分别作为输入的存储桶、中间临时缓存存储桶和结果存储桶。在实例前,由于我们的函数即将部署在广州区,因此在广州区建立 3 个存储桶:

对象存储1	ap-guangzhou	srcmr
对象存储2	ap-guangzhou	middlestagebucket
对象存储3	ap-guangzhou	destcmr

为了让整个 Mapper 和 Reducer 逻辑更加清晰,在开始之前先对传统的 WordCount 结构进行改造,使其更加适合云函数,同时合理分配 Mapper 和 Reducer 的工作:

云函数SCF与对象存储实现WordCount算法的过程

功能实现

编写 Mapper 相关逻辑,代码如下:

# -*- coding: utf8 -*-
import datetime
from qcloud_cos_v5 import CosConfig
from qcloud_cos_v5 import CosS3Client
from qcloud_cos_v5 import CosServiceError
import re
import os
import sys
import logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger()
logger.setLevel(level=logging.INFO)
region = u'ap-guangzhou'  # 根据实际情况,修改地域
middle_stage_bucket = 'middlestagebucket'  # 根据实际情况,修改bucket名
def delete_file_folder(src):
    if os.path.isfile(src):
        try:
            os.remove(src)
        except:
            pass
    elif os.path.isdir(src):
        for item in os.listdir(src):
            itemsrc = os.path.join(src, item)
            delete_file_folder(itemsrc)
        try:
            os.rmdir(src)
        except:
            pass
def download_file(cos_client, bucket, key, download_path):
    logger.info("Get from [%s] to download file [%s]" % (bucket, key))
    try:
        response = cos_client.get_object(Bucket=bucket, Key=key, )
        response['Body'].get_stream_to_file(download_path)
    except CosServiceError as e:
        print(e.get_error_code())
        print(e.get_error_msg())
        return -1
    return 0
def upload_file(cos_client, bucket, key, local_file_path):
    logger.info("Start to upload file to cos")
    try:
        response = cos_client.put_object_from_local_file(
            Bucket=bucket,
            LocalFilePath=local_file_path,
            Key='{}'.format(key))
    except CosServiceError as e:
        print(e.get_error_code())
        print(e.get_error_msg())
        return -1
    logger.info("Upload data map file [%s] Success" % key)
    return 0
def do_mapping(cos_client, bucket, key, middle_stage_bucket, middle_file_key):
    src_file_path = u'/tmp/' + key.split('/')[-1]
    middle_file_path = u'/tmp/' + u'mapped_' + key.split('/')[-1]
    download_ret = download_file(cos_client, bucket, key, src_file_path)  # download src file
    if download_ret == 0:
        inputfile = open(src_file_path, 'r')  # open local /tmp file
        mapfile = open(middle_file_path, 'w')  # open a new file write stream
        for line in inputfile:
            line = re.sub('[^a-zA-Z0-9]', ' ', line)  # replace non-alphabetic/number characters
            words = line.split()
            for word in words:
                mapfile.write('%st%s' % (word, 1))  # count for 1
                mapfile.write('n')
        inputfile.close()
        mapfile.close()
        upload_ret = upload_file(cos_client, middle_stage_bucket, middle_file_key,
                                 middle_file_path)  # upload the file's each word
        delete_file_folder(src_file_path)
        delete_file_folder(middle_file_path)
        return upload_ret
    else:
        return -1
def map_caller(event, context, cos_client):
    appid = event['Records'][0]['cos']['cosBucket']['appid']
    bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid
    key = event['Records'][0]['cos']['cosObject']['key']
    key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1)
    logger.info("Key is " + key)
    middle_bucket = middle_stage_bucket + '-' + appid
    middle_file_key = '/' + 'middle_' + key.split('/')[-1]
    return do_mapping(cos_client, bucket, key, middle_bucket, middle_file_key)
def main_handler(event, context):
    logger.info("start main handler")
    if "Records" not in event.keys():
        return {"errorMsg": "event is not come from cos"}
    secret_id = "" 
    secret_key = ""  
    config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, )
    cos_client = CosS3Client(config)
    start_time = datetime.datetime.now()
    res = map_caller(event, context, cos_client)
    end_time = datetime.datetime.now()
    print("data mapping duration: " + str((end_time - start_time).microseconds / 1000) + "ms")
    if res == 0:
        return "Data mapping SUCCESS"
    else:
        return "Data mapping FAILED"

同样的方法,建立 reducer.py 文件,编写 Reducer 逻辑,代码如下:

# -*- coding: utf8 -*-
from qcloud_cos_v5 import CosConfig
from qcloud_cos_v5 import CosS3Client
from qcloud_cos_v5 import CosServiceError
from operator import itemgetter
import os
import sys
import datetime
import logging
region = u'ap-guangzhou'  # 根据实际情况,修改地域
result_bucket = u'destmr'  # 根据实际情况,修改bucket名
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger()
logger.setLevel(level=logging.INFO)
def delete_file_folder(src):
    if os.path.isfile(src):
        try:
            os.remove(src)
        except:
            pass
    elif os.path.isdir(src):
        for item in os.listdir(src):
            itemsrc = os.path.join(src, item)
            delete_file_folder(itemsrc)
        try:
            os.rmdir(src)
        except:
            pass
def download_file(cos_client, bucket, key, download_path):
    logger.info("Get from [%s] to download file [%s]" % (bucket, key))
    try:
        response = cos_client.get_object(Bucket=bucket, Key=key, )
        response['Body'].get_stream_to_file(download_path)
    except CosServiceError as e:
        print(e.get_error_code())
        print(e.get_error_msg())
        return -1
    return 0
def upload_file(cos_client, bucket, key, local_file_path):
    logger.info("Start to upload file to cos")
    try:
        response = cos_client.put_object_from_local_file(
            Bucket=bucket,
            LocalFilePath=local_file_path,
            Key='{}'.format(key))
    except CosServiceError as e:
        print(e.get_error_code())
        print(e.get_error_msg())
        return -1
    logger.info("Upload data map file [%s] Success" % key)
    return 0
def qcloud_reducer(cos_client, bucket, key, result_bucket, result_key):
    word2count = {}
    src_file_path = u'/tmp/' + key.split('/')[-1]
    result_file_path = u'/tmp/' + u'result_' + key.split('/')[-1]
    download_ret = download_file(cos_client, bucket, key, src_file_path)
    if download_ret == 0:
        map_file = open(src_file_path, 'r')
        result_file = open(result_file_path, 'w')
        for line in map_file:
            line = line.strip()
            word, count = line.split('t', 1)
            try:
                count = int(count)
                word2count[word] = word2count.get(word, 0) + count
            except ValueError:
                logger.error("error value: %s, current line: %s" % (ValueError, line))
                continue
        map_file.close()
        delete_file_folder(src_file_path)
    sorted_word2count = sorted(word2count.items(), key=itemgetter(1))[::-1]
    for wordcount in sorted_word2count:
        res = '%st%s' % (wordcount[0], wordcount[1])
        result_file.write(res)
        result_file.write('n')
    result_file.close()
    upload_ret = upload_file(cos_client, result_bucket, result_key, result_file_path)
    delete_file_folder(result_file_path)
    return upload_ret
def reduce_caller(event, context, cos_client):
    appid = event['Records'][0]['cos']['cosBucket']['appid']
    bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid
    key = event['Records'][0]['cos']['cosObject']['key']
    key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1)
    logger.info("Key is " + key)
    res_bucket = result_bucket + '-' + appid
    result_key = '/' + 'result_' + key.split('/')[-1]
    return qcloud_reducer(cos_client, bucket, key, res_bucket, result_key)
def main_handler(event, context):
    logger.info("start main handler")
    if "Records" not in event.keys():
        return {"errorMsg": "event is not come from cos"}
    secret_id = "SecretId" 
    secret_key = "SecretKey"  
    config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, )
    cos_client = CosS3Client(config)
    start_time = datetime.datetime.now()
    res = reduce_caller(event, context, cos_client)
    end_time = datetime.datetime.now()
    print("data reducing duration: " + str((end_time - start_time).microseconds / 1000) + "ms")
    if res == 0:
        return "Data reducing SUCCESS"
    else:
        return "Data reducing FAILED"

部署与测试

遵循 Serverless Framework 的 yaml 规范,编写 serveerless.yaml:

WordCountMapper:
  component: "@serverless/tencent-scf"
  inputs:
    name: mapper
    codeUri: ./code
    handler: index.main_handler
    runtime: Python3.6
    region: ap-guangzhou
    description: 网站监控
    memorySize: 64
    timeout: 20
    events:
      - cos:
          name: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com
          parameters:
            bucket: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com
            filter:
              prefix: ''
              suffix: ''
            events: cos:ObjectCreated:*
            enable: true

WordCountReducer:
  component: "@serverless/tencent-scf"
  inputs:
    name: reducer
    codeUri: ./code
    handler: index.main_handler
    runtime: Python3.6
    region: ap-guangzhou
    description: 网站监控
    memorySize: 64
    timeout: 20
    events:
      - cos:
          name: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com
          parameters:
            bucket: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com
            filter:
              prefix: ''
              suffix: ''
            events: cos:ObjectCreated:*
            enable: true

完成之后,通过 sls --debug 指令进行部署。部署成功之后,进行基本的测试:

  1. 准备一个英文文档:

云函数SCF与对象存储实现WordCount算法的过程

  1. 登录腾讯云后台,打开我们最初建立的存储桶:srcmr,并上传该文件;

  2. 上传成功之后,稍等片刻即可看到 Reducer 程序已经在 Mapper 执行之后,产出日志:

云函数SCF与对象存储实现WordCount算法的过程

此时,我们打开结果存储桶,查看结果:

云函数SCF与对象存储实现WordCount算法的过程

现在,我们就完成了简单的词频统计功能。

总结

Serverless 架构是适用于大数据处理的。在腾讯云官网,我们也可以看到其关于数据 ETL 处理的场景描述:

云函数SCF与对象存储实现WordCount算法的过程

本实例中,有一键部署多个函数的操作。在实际生产中,每个项目都不会是单个函数单打独斗的,而是多个函数组合应用,形成一个 Service 体系,所以一键部署多个函数就显得尤为重要。通过本实例,希望读者可以对 Serverless 架构的应用场景有更多的了解,并且能有所启发,将云函数和不同触发器进行组合,应用在自身业务中。

上述内容就是云函数SCF与对象存储实现WordCount算法的过程,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI