温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Redis内存满了该怎么办

发布时间:2021-08-16 20:31:24 来源:亿速云 阅读:214 作者:chen 栏目:大数据

这篇文章主要讲解了“Redis内存满了该怎么办”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Redis内存满了该怎么办”吧!

 
 

概述

Redis的文章,我之前写过一篇关于「Redis的缓存的三大问题」,累计阅读也快800了,对于还只有3k左右的粉丝量,能够达到这个阅读量,已经是比较难了。

这说明那篇文章写的还过得去,收到很多人的阅读肯定,感兴趣的看一下[看完这篇Redis缓存三大问题,保你能和面试官互扯。]。

「三大缓存问题」只是Redis的其中的一小部分的知识点,想要深入学习Redis还要学习比较多的知识点。

那么今天就带来了一个面试常问的一个问题:「假如你的Redis内存满了怎么办?」 长期的把Redis作为缓存使用,总有一天会存满的时候对吧。

这个面试题不慌呀,在Redis中有配置参数maxmemory可以「设置Redis内存的大小」

在Redis的配置文件redis.conf文件中,配置maxmemory的大小参数如下所示:

Redis内存满了该怎么办  

实际生产中肯定不是100mb的大小哈,不要给误导了,这里我只是让大家认识这个参数,一般小的公司都是设置为3G左右的大小。

除了在配置文件中配置生效外,还可以通过命令行参数的形式,进行配置,具体的配置命令行如下所示:

//获取maxmemory配置参数的大小
127.0.0.1:6379> config get maxmemory
//设置maxmemory参数为100mb
127.0.0.1:6379> config set maxmemory 100mb
 

倘若实际的存储中超出了Redis的配置参数的大小时,Redis中有「淘汰策略」,把「需要淘汰的key给淘汰掉,整理出干净的一块内存给新的key值使用」

接下来我们就详细的聊一聊Redis中的淘汰策略,并且深入的理解每个淘汰策略的原理和应用的场景。

 

淘汰策略

Redis提供了「6种的淘汰策略」,其中默认的是noeviction,这6种淘汰策略如下:

  1. noeviction(     「默认策略」):若是内存的大小达到阀值的时候,所有申请内存的指令都会报错。
  2. allkeys-lru:所有key都是使用     「LRU算法」进行淘汰。
  3. volatile-lru:所有     「设置了过期时间的key使用LRU算法」进行淘汰。
  4. allkeys-random:所有的key使用     「随机淘汰」的方式进行淘汰。
  5. volatile-random:所有     「设置了过期时间的key使用随机淘汰」的方式进行淘汰。
  6. volatile-ttl:所有设置了过期时间的key     「根据过期时间进行淘汰,越早过期就越快被淘汰」

假如在Redis中的数据有「一部分是热点数据,而剩下的数据是冷门数据」,或者「我们不太清楚我们应用的缓存访问分布状况」,这时可以使用allkeys-lru

假如所有的数据访问的频率大概一样,就可以使用allkeys-random的淘汰策略。

假如要配置具体的淘汰策略,可以在redis.conf配置文件中配置,具体配置如下所示:

Redis内存满了该怎么办  

这只需要把注释给打开就可以,并且配置指定的策略方式,另一种的配置方式就是命令的方式进行配置,具体的执行命令如下所示:

// 获取maxmemory-policy配置
127.0.0.1:6379> config get maxmemory-policy
// 设置maxmemory-policy配置为allkeys-lru
127.0.0.1:6379> config set maxmemory-policy allkeys-lru
 

在介绍6种的淘汰策略方式的时候,说到了LRU算法,「那么什么是LRU算法呢?」

 

LRU算法

LRU(Least Recently Used)即表示最近最少使用,也就是在最近的时间内最少被访问的key,算法根据数据的历史访问记录来进行淘汰数据。

它的核心的思想就是:「假如一个key值在最近很少被使用到,那么在将来也很少会被访问」

实际上Redis实现的LRU并不是真正的LRU算法,也就是名义上我们使用LRU算法淘汰键,但是实际上被淘汰的键并不一定是真正的最久没用的。

Redis使用的是近似的LRU算法,「通过随机采集法淘汰key,每次都会随机选出5个key,然后淘汰里面最近最少使用的key」

这里的5个key只是默认的个数,具体的个数也可以在配置文件中进行配置,在配置文件中的配置如下图所示:

Redis内存满了该怎么办  

当近似LRU算法取值越大的时候就会越接近真实的LRU算法,可以这样理解,因为「取值越大那么获取的数据就越全,淘汰中的数据的就越接近最近最少使用的数据」

那么为了实现根据时间实现LRU算法,Redis必须为每个key中额外的增加一个内存空间用于存储每个key的时间,大小是3字节。

在Redis 3.0中对近似的LRU算法做了一些优化,Redis中会维护大小是16的一个候选池的内存。

当第一次随机选取的采样数据,数据都会被放进候选池中,并且候选池中的数据会根据时间进行排序。

当第二次以后选取的数据,只有「小于候选池内的最小时间」的才会被放进候选池中。

当某一时刻候选池的数据满了,那么时间最大的key就会被挤出候选池。当执行淘汰时,直接从候选池中选取最近访问时间最小的key进行淘汰。

这样做的目的就是选取出最近似符合最近最少被访问的key值,能够正确的淘汰key值,因为随机选取的样本中的最小时间可能不是真正意义上的最小时间。

但是LRU算法有一个弊端:就是假如一个key值在以前都没有被访问到,然而最近一次被访问到了,那么就会认为它是热点数据,不会被淘汰。

然而有些数据以前经常被访问到,只是最近的时间内没有被访问到,这样就导致这些数据很可能被淘汰掉,这样一来就会出现误判而淘汰热点数据。

于是在Redis 4.0的时候除了LRU算法,新加了一种LFU算法,「那么什么是LFU算法算法呢?」

 

LFU算法

LFU(Least Frequently Used)即表示最近频繁被使用,也就是最近的时间段内,频繁被访问的key,它以最近的时间段的被访问次数的频率作为一种判断标准。

它的核心思想就是:根据key最近被访问的频率进行淘汰,比较少被访问的key优先淘汰,反之则优先保留。

LFU算法反映了一个key的热度情况,不会因为LRU算法的偶尔一次被访问被认为是热点数据。

在LFU算法中支持volatile-lfu策略和allkeys-lfu策略。

以上介绍了Redis的6种淘汰策略,这6种淘汰策略旨在告诉我们怎么做,但是什么时候做?这个还没说,下面我们就来详细的了解Redis什么时候执行淘汰策略。

 

删除过期键策略

在Redis中有三种删除的操作此策略,分别是:

  1. 「定时删除」:创建一个定时器,定时的执行对key的删除操作。
  2. 「惰性删除」:每次只有再访问key的时候,才会检查key的过期时间,若是已经过期了就执行删除。
  3. 「定期删除」:每隔一段时间,就会检查删除掉过期的key。

「定时删除」对于「内存来说是友好的」,定时清理出干净的空间,但是对于「cpu来说并不是友好的」,程序需要维护一个定时器,这就会占用cpu资源。

「惰性的删除」对于「cpu来说是友好的」,cpu不需要维护其它额外的操作,但是对于「内存来说是不友好的」,因为要是有些key一直没有被访问到,就会一直占用着内存。

定期删除是上面两种方案的折中方案**,每隔一段时间删除过期的key,也就是根据具体的业务,合理的取一个时间定期的删除key**。

通过「最合理控制删除的时间间隔」来删除key,减「少对cpu的资源的占用消耗」,使删除操作合理化。

 

RDB和AOF 的淘汰处理

在Redis中持久化的方式有两种RDBAOF,具体这两种详细的持久化介绍,可以参考这一篇文章[面试造飞机系列:面对Redis持久化连环Call,你还顶得住吗?]。

在RDB中是以快照的形式获取内存中某一时间点的数据副本,在创建RDB文件的时候可以通过savebgsave命令执行创建RDB文件。

「这两个命令都不会把过期的key保存到RDB文件中」,这样也能达到删除过期key的效果。

当在启动Redis载入RDB文件的时候,Master不会把过期的key载入,而Slave会把过期的key载入。

在AOF模式下,Redis提供了Rewite的优化措施,执行的命令分别是REWRITEAOFBGREWRITEAOF「这两个命令都不会把过期的key写入到AOF文件中,也能删除过期key」

感谢各位的阅读,以上就是“Redis内存满了该怎么办”的内容了,经过本文的学习后,相信大家对Redis内存满了该怎么办这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI