这篇文章将为大家详细讲解有关R语言汇总统计中怎么批量计算不同因素不同水平的平均值,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
实际工作中,我们需要对数据进行平均值计算,这里我比较了aggregate
和data.table
的方法,测试主要包括:
1,对数据yield计算平均值
2,计算N不同水平的平均值
3, 计算N和P不同水平的平均值
1. 常规方法aggregate
代码:
data(npk)head(npk)aggregate(yield~N,data=npk,FUN = mean)aggregate(yield~N+P,data=npk,FUN = mean)
结果
> aggregate(yield~N,data=npk,FUN = mean) N yield1 0 52.066672 1 57.68333> aggregate(yield~N+P,data=npk,FUN = mean) N P yield1 0 0 51.716672 1 0 59.216673 0 1 52.416674 1 1 56.15000
2. 使用data.table方法
代码:
data(npk)head(npk)library(data.table)setDT(npk)# 单个变量npk[,mean(yield),by=N]# 两个变量npk[,mean(yield),by=c("N","P")]# 两个变量的另一种写法npk[,mean(yield),by=list(N,P)]npk[,mean(yield),by=.(N,P)]
结果:
> # 单个变量> npk[,mean(yield),by=N] N V11: 0 52.066672: 1 57.68333>> # 两个变量> npk[,mean(yield),by=c("N","P")] N P V11: 0 1 52.416672: 1 1 56.150003: 0 0 51.716674: 1 0 59.21667>>> # 两个变量的另一种写法> npk[,mean(yield),by=list(N,P)] N P V11: 0 1 52.416672: 1 1 56.150003: 0 0 51.716674: 1 0 59.21667> npk[,mean(yield),by=.(N,P)] N P V11: 0 1 52.416672: 1 1 56.150003: 0 0 51.716674: 1 0 59.21667
关于“R语言汇总统计中怎么批量计算不同因素不同水平的平均值”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/4592498/blog/4473105