这期内容当中小编将会给大家带来有关Pandas使用小技巧有哪些,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
对于动辄就几十或几百个 G 的数据,在读取的这么大数据的时候,我们有没有办法随机选取一小部分数据,然后读入内存,快速了解数据和开展 EDA ?
使用 Pandas 的 skiprows 和 概率知识,就能做到。
下面解释具体怎么做。
如下所示,读取某 100 G 大小的 big_data.csv 数据
使用 skiprows 参数,
x > 0 确保首行读入,
np.random.rand() > 0.01 表示 99% 的数据都会被随机过滤掉
言外之意,只有全部数据的 1% 才有机会选入内存中。
import pandas as pd
import numpy as np
df = pd.read_csv("big_data.csv",
skiprows =
lambda x: x>0 and np.random.rand() > 0.01)
print("The shape of the df is {}.
It has been reduced 100 times!".format(df.shape))
使用这种方法,读取的数据量迅速缩减到原来的 1% ,对于迅速展开数据分析有一定的帮助。上述就是小编为大家分享的Pandas使用小技巧有哪些了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。