更多大数据分析、建模等内容请关注公众号《bigdatamodeling》
在对变量分箱后,需要计算变量的重要性,IV是评估变量区分度或重要性的统计量之一,python计算IV值的代码如下:
def CalcIV(Xvar, Yvar):
N_0 = np.sum(Yvar==0)
N_1 = np.sum(Yvar==1)
N_0_group = np.zeros(np.unique(Xvar).shape)
N_1_group = np.zeros(np.unique(Xvar).shape)
for i in range(len(np.unique(Xvar))):
N_0_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 0)].count()
N_1_group[i] = Yvar[(Xvar == np.unique(Xvar)[i]) & (Yvar == 1)].count()
iv = np.sum((N_0_group/N_0 - N_1_group/N_1) * np.log((N_0_group/N_0)/(N_1_group/N_1)))
return iv
def caliv_batch(df, Kvar, Yvar):
df_Xvar = df.drop([Kvar, Yvar], axis=1)
ivlist = []
for col in df_Xvar.columns:
iv = CalcIV(df[col], df[Yvar])
ivlist.append(iv)
names = list(df_Xvar.columns)
iv_df = pd.DataFrame({'Var': names, 'Iv': ivlist}, columns=['Var', 'Iv'])
return iv_df
其中,df是分箱后的数据集,Kvar是主键,Yvar是y变量(0是好,1是坏)。代码运行结果如下:
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。