温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

spark01--scala 的wordcount的过程是怎样的

发布时间:2021-10-19 10:54:38 来源:亿速云 阅读:119 作者:柒染 栏目:大数据

今天就跟大家聊聊有关spark01--scala 的wordcount的过程是怎样的,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

第一版:原始版本

def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setAppName("workcount")
    conf.setMaster("local")

    //SparkContext 是通往spark 集群的唯一通道
    val sc = new SparkContext(conf)

    /** 加载配置当前项目下words文件的内容
      * 内容为:
        hello java
        hello spark
        hello hdfs
        hello mr
        hello java
        hello spark
      */
    val lines = sc.textFile("./words")
    //line为每一行,每一行经过" "空格切分成RRD类型
    val lists: RDD[String] = lines.flatMap(line => {line.split(" ")})
    //单词转换成二元元组
    val values: RDD[(String, Int)] = lists.map(word=>{new Tuple2(word,1)})
    /**
      * reduceByKey 函数是先把相同的单词(key)进行分组,如
      hello 1
      hello 1
      hello 1
      hello 1
      hello 1
      hello 1

      java 1
      java 1

      spark 1
      spark 1

      hdfs 1
      mr 1

      (v1:Int, v2:Int)=>{v1+v2} 表示经过分组后的单词元组(Sring,Int),相同key的 value进行累加,返回v1+v2 就是累加的值
      */
    val result: RDD[(String, Int)] = values.reduceByKey((v1:Int, v2:Int)=>{v1+v2})
    //遍历结果
    result.foreach(println)
    //关闭
    sc.stop()
  }

第二版:

 def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setAppName("workcount")
    conf.setMaster("local")

    val sc = new SparkContext(conf)
    val result = sc.textFile("./words").flatMap(line=>line.split(" ")).map(world=>new Tuple2(world,1)).reduceByKey((v1:Int, v2:Int)=>{v1+v2})

    result.foreach(println)
    sc.stop()

  }

第三版本:最简版本

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
    conf.setAppName("workcount")
    conf.setMaster("local")

    val sc = new SparkContext(conf)
    val result = sc.textFile("./words").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)

    result.foreach(println)
    sc.stop()
  }

简化后解释:

xxx.flatMap(line=>line.split(" "))中参数line只在=>后面使用一次,可以用 "_" 符号来表示该参数,xxx.flatMap(_.split(" "))

xxx.map(world=>new Tuple2(world,1))中world参数也是在=>后只使用一次,可以使用 "_"来表示,元组可以省略new,也可以省略Tuple2,xxx.map((_,1))

xxx.reduceByKey((v1:Int, v2:Int)=>{v1+v2})中v1,v2也是在=>后只使用一次,均可以使用"_"来表示,xxx.reduceByKey((_+_)

看完上述内容,你们对spark01--scala 的wordcount的过程是怎样的有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI