本篇内容主要讲解“spring cloud stream和kafka的原理及作用是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“spring cloud stream和kafka的原理及作用是什么”吧!
Spring Cloud Stream is a framework for building highly scalable event-driven microservices connected with shared messaging systems.
The framework provides a flexible programming model built on already established and familiar Spring idioms and best practices, including support for persistent pub/sub semantics, consumer groups, and stateful partitions.
野生翻译:spring cloud stream是打算统一消息中间件后宫的男人,他身手灵活,身后有靠山spring,会使十八般武器(消息订阅模式啦,消费者组,stateful partitions什么的),目前后宫有东宫娘娘kafka和西宫娘娘rabbitMQ。
八卦党:今天我们扒一扒spring cloud stream和kafka的关系,rabbitMQ就让她在冷宫里面呆着吧。
A streaming platform has three key capabilities:
Publish and subscribe to streams of records, similar to a message queue or enterprise messaging system.
Store streams of records in a fault-tolerant durable way.
Process streams of records as they occur.
野生翻译:老娘是个流处理平台,能干的活可多了:
能处理发布/订阅消息
用很稳的方式保存消息
一来就处理,真的很快
总结一句话,就是快、稳、准。
kafka的运行非常简单,从这里下载,然后先运行zookeeper。在最新的kafka的下载包里面也包含了一个zookeeper,可以直接用里面的。zookeeper启动后,需要在kafka的配置文件里面配置好zookeeper的ip和端口,配置文件是config/server.properties。
############################# Zookeeper ############################# # Zookeeper connection string (see zookeeper docs for details). # This is a comma separated host:port pairs, each corresponding to a zk # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002". # You can also append an optional chroot string to the urls to specify the # root directory for all kafka znodes. zookeeper.connect=localhost:2181 # Timeout in ms for connecting to zookeeper zookeeper.connection.timeout.ms=6000
然后运行bin目录下的命令,启动kafka就可以啦
bin/kafka-server-start.sh -daemon config/server.properties
kafka虽然启动了,但我们需要了解她的话,还是需要一个总管来汇报情况,我这边用的就是kafka-manager,下载地址在这里。很可惜的是只有源代码的下载,没有可运行版本的,需要自行编译,这个编译速度还挺慢的,我这边提供一个编译好的版本给大家,点这里。
kafka-manager同样需要配置一下和kafka的关系,在conf/application.conf文件里面,不过配置的不是kafka自己,而是kafka挂载的zookeeper。
kafka-manager.zkhosts="localhost:2181"
然后启动bin/kafka-manager就可以了(windows环境下也有kafka-manager.bat可以运行)
这里有个坑,在windows下面运行的话,可能启动失败,提示输入行太长
这个是因为目录太长,把kafak-manager-2.0.0.2目录名缩短就可以正常运行了。
启动后通过Add Cluster把Cluster Zookeeper Host把zookeeper的地址端口填上,Kafka Version的版本一定要和正在使用的kafka版本对上,否则可能看不到kafka的内容。
然后我们就能看到kafka的broker,topic,consumers,partitions等信息了。
一切的起点,还在start.spring.io
这黑乎乎的界面是spring为了万圣节搞的事情。和我们相关的是右边这两个依赖,这两个依赖在pom.xml里面对应的是这些
<dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-streams</artifactId> </dependency> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream</artifactId> </dependency> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream-binder-kafka-streams</artifactId> </dependency> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream-test-support</artifactId> <scope>test</scope> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-dependencies</artifactId> <version>${spring-cloud.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement>
不过只凭这些还不行,直接运行的话,会提示
Caused by: java.lang.IllegalStateException: Unknown binder configuration: kafka
还需要加上一个依赖包
<dependency> <groupId>org.springframework.cloud</groupId> <artifactId>spring-cloud-stream-binder-kafka</artifactId> </dependency>
spring cloud stream项目框架搭好后,我们需要分两个部分,一个是发消息的部分,一个是收消息的地方。我们先看发消息的部分,首先是配置文件,application.yml
spring: cloud: stream: default-binder: kafka #默认的绑定器, kafka: #如果用的是rabbitMQ这里填 rabbit binder: brokers: #Kafka的消息中间件服务器地址 - localhost:9092 bindings: output: #通道名称 binder: kafka destination: test1 #消息发往的目的地,对应topic group: output-group-1 #对应kafka的group content-type: text/plain #消息的格式
注意这里的output,表示是发布消息的,和后面订阅消息是对应的。这个output的名字是消息通道名称,是可以自定义的,后面会讲到。
然后我们需要创建一个发布者
import org.springframework.cloud.stream.annotation.EnableBinding; import org.springframework.cloud.stream.messaging.Source; @EnableBinding(Source.class) public class Producer { private Source mySource; public Producer(Source mySource) { super(); this.mySource = mySource; } public Source getMysource() { return mySource; } public void setMysource(Source mysource) { mySource = mySource; } }
@EnableBinding 按字面理解就知道是绑定通道的,绑定的通道名就是上面的output,Soure.class是spring 提供的,表示这是一个可绑定的发布通道,它的通道名称就是output,和application.yml里面的output对应
源码可以看的很清楚
package org.springframework.cloud.stream.messaging; import org.springframework.cloud.stream.annotation.Output; import org.springframework.messaging.MessageChannel; /** * Bindable interface with one output channel. * * @author Dave Syer * @author Marius Bogoevici * @see org.springframework.cloud.stream.annotation.EnableBinding */ public interface Source { /** * Name of the output channel. */ String OUTPUT = "output"; /** * @return output channel */ @Output(Source.OUTPUT) MessageChannel output(); }
如果我们需要定义我们自己的通道,可以自己写一个类,比如下面这种,通道名就改成了my-out
import org.springframework.cloud.stream.annotation.Input; import org.springframework.cloud.stream.annotation.Output; import org.springframework.messaging.MessageChannel; import org.springframework.messaging.SubscribableChannel; public interface MySource { String INPUT = "my-in"; String OUTPUT = "my-out"; @Input(INPUT) SubscribableChannel myInput(); @Output(OUTPUT) MessageChannel myOutput(); }
这样的话,application.yml就要改了
my-out: binder: kafka destination: mytest #消息发往的目的地,对应topic group: output-group-2 #对应kafka的group content-type: text/plain #消息的格式
Product.class的@EnableBinding也需要改,为了做对应,我另外写了一个MyProducer
import org.springframework.cloud.stream.annotation.EnableBinding; @EnableBinding(MySource.class) public class MyProducer { private MySource mySource; public MyProducer(MySource mySource) { super(); this.mySource = mySource; } public MySource getMysource() { return mySource; } public void setMysource(MySource mysource) { mySource = mySource; } }
这样,发布消息的部分就写好了,我们写个controller来发送消息
import org.springframework.beans.factory.annotation.Autowired; import org.springframework.messaging.support.MessageBuilder; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestMethod; import org.springframework.web.bind.annotation.RestController; import com.wphmoon.kscs.service.ChatMessage; import com.wphmoon.kscs.service.MyProducer; import com.wphmoon.kscs.service.Producer; @RestController public class MyController { @Autowired private Producer producer; @Autowired private MyProducer myProducer; // get the String message via HTTP, publish it to broker using spring cloud stream @RequestMapping(value = "/sendMessage/string", method = RequestMethod.POST) public String publishMessageString(@RequestBody String payload) { // send message to channel output producer.getMysource().output().send(MessageBuilder.withPayload(payload).setHeader("type", "string").build()); return "success"; } @RequestMapping(value = "/sendMyMessage/string", method = RequestMethod.POST) public String publishMyMessageString(@RequestBody String payload) { // send message to channel myoutput myProducer.getMysource().myOutput().send(MessageBuilder.withPayload(payload).setHeader("type", "string").build()); return "success"; } }
很简单,直接调用producer发送一个字符串就行了,我使用postman来发起这个动作
消息发送出去了,我们怎么收消息呢?往下看。
同样的,我们用之前的spring cloud stream项目框架做收消息的部分,首先是application.yml文件
server: port: 8081 spring: cloud: stream: default-binder: kafka kafka: binder: brokers: - localhost:9092 bindings: input: binder: kafka destination: test1 content-type: text/plain group: input-group-1 my-in: binder: kafka destination: mytest content-type: text/plain group: input-group-2
重点关注的就是input和my-in ,这个和之前的output和my-out一一对应。
默认和Source类对应的是Sink,这个是官方提供的,代码如下
package org.springframework.cloud.stream.messaging; import org.springframework.cloud.stream.annotation.Input; import org.springframework.messaging.SubscribableChannel; /** * Bindable interface with one input channel. * * @author Dave Syer * @author Marius Bogoevici * @see org.springframework.cloud.stream.annotation.EnableBinding */ public interface Sink { /** * Input channel name. */ String INPUT = "input"; /** * @return input channel. */ @Input(Sink.INPUT) SubscribableChannel input(); }
调用它的类Consumer用来接收消息,代码如下
import java.time.Instant; import java.time.ZoneId; import java.time.format.DateTimeFormatter; import java.time.format.FormatStyle; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.cloud.stream.annotation.EnableBinding; import org.springframework.cloud.stream.annotation.StreamListener; import org.springframework.cloud.stream.messaging.Sink; import org.springframework.messaging.handler.annotation.Payload; @EnableBinding(Sink.class) public class Consumer { private static final Logger logger = LoggerFactory.getLogger(Consumer.class); @StreamListener(target = Sink.INPUT) public void consume(String message) { logger.info("recieved a string message : " + message); } @StreamListener(target = Sink.INPUT, condition = "headers['type']=='chat'") public void handle(@Payload ChatMessage message) { final DateTimeFormatter df = DateTimeFormatter.ofLocalizedTime(FormatStyle.MEDIUM) .withZone(ZoneId.systemDefault()); final String time = df.format(Instant.ofEpochMilli(message.getTime())); logger.info("recieved a complex message : [{}]: {}", time, message.getContents()); } }
而我们自定义channel的类MySink和MyConsumer代码如下:
import org.springframework.cloud.stream.annotation.Input; import org.springframework.messaging.SubscribableChannel; public interface MySink { String INPUT = "my-in"; @Input(INPUT) SubscribableChannel myInput(); }
import java.time.Instant; import java.time.ZoneId; import java.time.format.DateTimeFormatter; import java.time.format.FormatStyle; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.cloud.stream.annotation.EnableBinding; import org.springframework.cloud.stream.annotation.StreamListener; import org.springframework.cloud.stream.messaging.Sink; import org.springframework.messaging.handler.annotation.Payload; @EnableBinding(MySink.class) public class MyConsumer { private static final Logger logger = LoggerFactory.getLogger(MyConsumer.class); @StreamListener(target = MySink.INPUT) public void consume(String message) { logger.info("recieved a string message : " + message); } @StreamListener(target = MySink.INPUT, condition = "headers['type']=='chat'") public void handle(@Payload ChatMessage message) { final DateTimeFormatter df = DateTimeFormatter.ofLocalizedTime(FormatStyle.MEDIUM) .withZone(ZoneId.systemDefault()); final String time = df.format(Instant.ofEpochMilli(message.getTime())); logger.info("recieved a complex message : [{}]: {}", time, message.getContents()); } }
这样就OK了,当上面我们用postman发了消息后,这边就能直接在日志里面看到
2019-10-29 18:42:39.455 INFO 13556 --- [container-0-C-1] com.wphmoon.kscsclient.MyConsumer : recieved a string message : 你瞅啥 2019-10-29 18:43:17.017 INFO 13556 --- [container-0-C-1] com.wphmoon.kscsclient.Consumer : recieved a string message : 你瞅啥
我们在application.yml里面定义的destination,就是kafka的topic,在kafka-manager的topic list里面可以看到
而接收消息的consumer也可以看到
这就是spring cloud stream和kafka的帝后之恋,不过他们这种政治联姻哪有这么简单,里面复杂的部分我们后面再讲,敬请期待,起驾回宫(野生翻译:The Return of the King)
到此,相信大家对“spring cloud stream和kafka的原理及作用是什么”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。