这篇文章主要讲解了“怎么利用python的opencv去除图片的白边”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么利用python的opencv去除图片的白边”吧!
本文实例为大家分享了python使用opencv切割图片白边的具体代码,可以横切和竖切,供大家参考,具体内容如下
废话不多说直接上码,分享使人进步:
from PIL import Image
from itertools import groupby
import cv2
import datetime
import os
# from core.rabbitmq import MessageQueue
THRESHOLD_VALUE = 230 # 二值化时的阈值
PRETREATMENT_FILE = 'hq' # 横切时临时保存的文件夹
W = 540 # 最小宽度
H = 960 # 最小高度
class Pretreatment(object):
__doc__ = "图片横向切割"
def __init__(self, path, save_path, min_size=960):
self.x = 0
self.y = 0
self.img_section = []
self.continuity_position = []
self.path = path
self.save_path = save_path
self.img_obj = None
self.min_size = min_size
self.mkdir(self.save_path)
self.file_name = self.path.split('/')[-1]
def get_continuity_position_new(self):
img = cv2.imread(self.path)
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh2 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)
width = img.shape[1]
height = img.shape[0]
self.x = width
self.y = height
for i in range(0, height):
if thresh2[i].sum() != 255 * width:
self.continuity_position.append(i)
def filter_rule(self):
if self.y < self.min_size:
return True
def mkdir(self, path):
if not os.path.exists(path):
os.makedirs(path)
def get_section(self):
# 获取区间
for k, g in groupby(enumerate(self.continuity_position), lambda x: x[1] - x[0]):
l1 = [j for i, j in g] # 连续数字的列表
if len(l1) > 1:
self.img_section.append([min(l1), max(l1)])
def split_img(self):
print(self.img_section)
for k, s in enumerate(self.img_section):
if s:
if not self.img_obj:
self.img_obj = Image.open(self.path)
if self.x < W:
return
if s[1] - s[0] < H:
return
cropped = self.img_obj.crop((0, s[0], self.x, s[1])) # (left, upper, right, lower)
self.mkdir(os.path.join(self.save_path, PRETREATMENT_FILE))
cropped.save(os.path.join(self.save_path, PRETREATMENT_FILE, f"hq_{k}_{self.file_name}"))
def remove_raw_data(self):
os.remove(self.path)
def main(self):
# v2
try:
self.get_continuity_position_new()
self.filter_rule()
self.get_section()
self.split_img()
except Exception as e:
print(self.file_name)
print(e)
finally:
if self.img_obj:
self.img_obj.close()
class Longitudinal(Pretreatment):
def get_continuity_position_new(self):
print(self.path)
img = cv2.imread(self.path)
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh2 = cv2.threshold(gray_image, THRESHOLD_VALUE, 255, cv2.THRESH_BINARY)
width = img.shape[1]
height = img.shape[0]
print(width, height)
self.x = width
self.y = height
for i in range(0, width):
if thresh2[:, i].sum() != 255 * height:
self.continuity_position.append(i)
def split_img(self):
print(self.img_section)
for k, s in enumerate(self.img_section):
if s:
if not self.img_obj:
self.img_obj = Image.open(self.path)
if self.y < H:
return
if s[1] - s[0] < W:
return
cropped = self.img_obj.crop((s[0], 0, s[1], self.y)) # (left, upper, right, lower)
cropped.save(os.path.join(self.save_path, f"{k}_{self.file_name}"))
def main(path, save_path):
starttime = datetime.datetime.now()
a = Pretreatment(path=path, save_path=save_path)
a.main()
for root, dirs, files in os.walk(os.path.join(save_path, PRETREATMENT_FILE)):
for i in files:
b = Longitudinal(path=os.path.join(save_path, PRETREATMENT_FILE, i), save_path=save_path)
b.main()
os.remove(os.path.join(save_path, PRETREATMENT_FILE, i))
endtime = datetime.datetime.now()
print(f'耗时:{(endtime - starttime)}')
if __name__ == '__main__':
path = '你图片存放的路径'
save_path = '要保存的路径'
for _, _, files in os.walk(path):
for i in files:
main(path=os.path.join(path, i), save_path=save_path)
os.rmdir(os.path.join(save_path, PRETREATMENT_FILE))
原始图片:
结果:
感谢各位的阅读,以上就是“怎么利用python的opencv去除图片的白边”的内容了,经过本文的学习后,相信大家对怎么利用python的opencv去除图片的白边这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。