这篇文章主要介绍TensorFlow神经网络中张量与变量的概念分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
张量:TensorFlow的张量是n维数组,类型为tf.Tensor。
标量:一个数字 (0阶张量)
向量:一维数组 (1阶张量)
矩阵:二维数组 (2阶张量)
#创建常数张量 a = tf.constant(3.0) print(a)
#创建常数张量 a = tf.constant(3.0) print(a)
#创建张量数组 #0: array_0 = tf.zeros(shape=[3,3]) #3*3数组(0)
#1: array_1 = tf.ones(shape=[3,3]) #3*3数组(1)
#随机: array_random = tf.random_normal(shape=[2,3], mean=1.75, stddev=0.12) # 2*3数组 均值(1.75) 标准差
查看张量值:张量.eval()
#会话(查看张量) with tf.Session() as sess: print(a.eval()) print(array_0.eval()) print(array_1.eval()) print(array_random.eval())
#修改张量类型 array_0 = tf.cast(array_0, tf.int32)
注:属于动态改变张量,需要张量元素个数固定。
#修改张量形状 array_random = tf.reshape(array_random, shape=[3,2])
修改前:
修改后:
# 张量(创建与修改) import tensorflow as tf # 创建张量 def Create_Tensor(): # 创建常数张量 a = tf.constant(3.0) print(a) # 创建张量数组 # 0: array_0 = tf.zeros(shape=[3, 3]) # 3*3数组(0) # 1: array_1 = tf.ones(shape=[3, 3]) # 3*3数组(1) # 随机: array_random = tf.random_normal(shape=[2, 3], mean=1.75, stddev=0.12) # 2*3数组 均值(1.75) 标准差 # 会话(查看张量) with tf.Session() as sess: print(a.eval()) print(array_0.eval()) print(array_1.eval()) print(array_random.eval()) # 修改张量 def Modify_Tensor(): global array_0, array_random print('修改后的:') # 修改张量类型 array_0 = tf.cast(array_0, tf.int32) # 修改张量形状 array_random = tf.reshape(array_random, shape=[3, 2]) # 会话(查看张量) with tf.Session() as sess: print(array_0.eval()) print(array_random.eval()) # 创建张量 Create_Tensor() # 修改张量 Modify_Tensor()
# 定义变量 a = tf.Variable(initial_value=2) b = tf.Variable(initial_value=4) c = tf.add(a,b)
TensorFlow的变量必须初始化,否则会报错。
# 初始化变量 init = tf.global_variables_initializer()
# 开启会话 with tf.Session() as sess: sess.run(init) print(sess.run(c))
# 变量 import tensorflow as tf # 定义变量 a = tf.Variable(initial_value=2) b = tf.Variable(initial_value=4) c = tf.add(a,b) # 初始化变量 init = tf.global_variables_initializer() # 开启会话 with tf.Session() as sess: sess.run(init) print(sess.run(c))
以上是“TensorFlow神经网络中张量与变量的概念分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。