本篇内容主要讲解“如何理解Java设计模式的解释器模式”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“如何理解Java设计模式的解释器模式”吧!
定义:给定一个语言,定义一个文法的一种表示, 并定义一个解释器, 这个解释器使用该表示来解释语言中的句子。
解释器模式所涉及的角色如下所示:
(1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。
(2)终结符表达式(Terminal Expression)角色:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。
(3)非终结符表达式(Nonterminal Expression)角色:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。
(4)环境(Context)角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。
1.当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树,可以使用解释器模式。而当存在以下情况时该模式效果最好
2.该文法的类层次结构变得庞大而无法管理。此时语法分析程序生成器这样的工具是最好的选择。他们无需构建抽象语法树即可解释表达式,这样可以节省空间而且还可能节省时间。
3.效率不是一个关键问题,最高效的解释器通常不是通过直接解释语法分析树实现的,而是首先将他们装换成另一种形式,例如,正则表达式通常被装换成状态机,即使在这种情况下,转换器仍可用解释器模式实现,该模式仍是有用的
1. 可以很容易地改变和扩展方法, 因为该模式使用类来表示方法规则, 你可以使用继承来改变或扩展该方法。
2.也比较容易实现方法, 因为定义抽象语法树总各个节点的类的实现大体类似, 这些类都易于直接编写。
3.解释器模式就是将一句话,转变为实际的命令程序执行而已。 而不用解释器模式本身也可以分析, 但通过继承抽象表达式的方式, 由于依赖转置原则, 使得文法的扩展和维护都带来的方便。
解释器模式为方法中的每一条规则至少定义了一个类, 因此包含许多规则的方法可能难以管理和维护。 因此当方法非常复杂时, 使用其他的技术如 语法分析程序 或 编译器生成器来处理。
//演奏内容类(Context) class PlayContext { //演奏文本 private string text; public string PlayText { get { return text; } set { text = value; } } }
//表达式类(AbstractExpression) abstract class Expression { //解释器 public void Interpret(PlayContext context) { if (context.PlayText.Length == 0) return; string playKey = context.PlayText.Substring(0, 1); context.PlayText = context.PlayText.Substring(2); double playValue = Convert.ToDouble(context.PlayText.Substring(0, context.PlayText.IndexOf(" "))); context.PlayText = context.PlayText.Substring(context.PlayText.IndexOf(" ") + 1); Excute(playKey, playValue); } //执行 public abstract void Excute(string key, double value); }
//音符类(TerminaExperssion) class Note : Expression { public override void Excute(string key, double value) { string note = ""; switch (key) { case "C": note = "1"; break; case "D": note = "2"; break; case "E": note = "3"; break; case "F": note = "4"; break; case "G": note = "5"; break; case "A": note = "6"; break; case "B": note = "7"; break; } } } //音符类(TerminaExperssion) class Scale : Expression { public override void Excute(string key, double value) { string scale = ""; switch ((int)value) { case 1: scale = "低音"; break; case 2: scale = "中音"; break; case 3: scale = "高音"; break; } } }
class Program { //客户端代码 static void Main(string[] args) { PlayContext context = new PlayContext(); context.PlayText = "O 2 E 0.5 G 0.5 A 3 E 0.5"; Expression expression = null; try { while (context.PlayText.Length > 0) { string str = context.PlayText.Substring(0, 1); switch (str) { case "O": expression = new Scale(); break; case "P"://当首字母为CDEFGAB及休止符P时,实例化音符 expression = new Note(); break; } expression.Interpret(context); } } catch (Exception ) { throw; } Console.Read(); } }
到此,相信大家对“如何理解Java设计模式的解释器模式”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。