这篇文章给大家分享的是有关Redis分布式锁有什么用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
分布式与单机情况下最大的不同在于其不是多线程而是多进程,而数据只有一份(或有限制),也就是说单机的共享内存已解决不了一致性写问题,此时需要利用锁的技术控制某一时刻修改数据的进程数。
当在分布式模型下,分布式锁还是可以将标记存在内存,只是该内存不是某个进程分配的内存而是公共内存(Redis、Memcache)。至于利用数据库、文件等做锁与单机的实现是一样的,只要保证标记能互斥就行。
最好是可重入锁(避免死锁)
最好是一把阻塞锁(根据业务需求决定)
最好是一把公平锁(根据业务需求决定)
有高可用、高性能的获取锁和释放锁功能
基于乐观锁,CAS,但如果是insert的情况采用主键冲突防重,在大并发情况下有可能会造成锁表现象
基于悲观锁,也就是排他锁,会有各种各样的问题(操作数据库需要一定的开销,使用数据库的行级锁并不一定靠谱,性能不靠谱)
如果按分布式该具备的特性来逐条匹配,特别是高可用(存在单点)、高性能是硬伤
一般都使用 setnx(set if not exists) 指令,只允许被一个客户端占有,先来先得, 用完后再通过 del 指令释放。
如果中间逻辑执行时发生异常,可能会导致 del 指令没有被执行,这样就会陷入死锁,怎么破?
对,给锁加个过期时间(即使出现异常也可以保证几秒之后锁会自动释放)!
但setnx 和 expire 之间redis服务器突然挂掉,怎么破?
其实该问题的根源就在于 setnx 和 expire 是两条指令而不是原子指令。为了解决这个疑难,Redis 开源社区涌现了一堆分布式锁的 解决方案。为了治理这个乱象,Redis 2.8 版本中加入了 set 指令的扩展参数,使得 setnx 和 expire 指令可以一起执行,彻底解决了分布式锁的乱象。
总之,setnx 和 expire 组合就是分布式锁的奥义所在。
如果在加锁和释放锁之间的逻辑执行的太长,超出了超时限制,怎么破?
也就是说第一个线程持有的锁过期了但临界区的逻辑还没有执行完,这个时候第二个线程就提前重新持有了这把锁,导致每个请求执行临界区代码时不能严格的串行执行。
Redis 的分布式锁不能解决超时问题,建议分布式锁不要用于较长时间的任务。
稍微安全一点的方案是为 set 指令的 value 参数设置为一个随机数,释放锁时先匹配随机数是否一致,一致的话再删除 key,这是可以确保当前线程占有的锁不会被其它线程释放,但是并不能解决锁被redis服务器自动释放的。
int tag = random.nextint()//随机数 boolean nx=true; int ex=5; if(redis.set(key, tag, nx, ex)){ do_something() redis.delifequals(key, tag)//不存在这样的命令 }
但是匹配 value 和删除 key 不是一个原子操作,怎么破?
需要使用 Lua 脚本来处理了,因为 Lua 脚本可以保证连续多个指令的原子性执行。
#delifequals.lua文件,下面的是社区热门代码 if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end //java调用 public void delifequals(){ String script = readScript("delifequals.lua"); int tag = 5; String key = "key"; Object eval = jedis.eval(script, Lists.newArrayList(key), Lists.newArrayList(tag)); System.out.println(eval); }
redis有类似Java 语言里有个 ReentrantLock 就是可重入锁吗?
要支持可重入,需要对jedis 的 set 方法进行包装,思路是:使用 Threadlocal 存储当前持有锁的计数。可重入锁加重了客户端的复杂性,精确一点还需要考虑内存锁计数的过期时间,代码复杂度将会继续升高。
public class JedisWithReentrantLock { private Jedis jedis; /** * 当前线程的锁及计数 */ private ThreadLocal<Map<String, Integer>> lockers = new ThreadLocal<>(); public JedisWithReentrantLock(Jedis jedis) { this.jedis = jedis; } private boolean set(String key) { return jedis.set(key, "", "nx", "ex", 5L) != null; } private void del(String key) { jedis.del(key); } private Map<String, Integer> getLockers() { Map<String, Integer> refs = lockers.get(); if (refs != null) { return refs; } lockers.set(Maps.newHashMap()); return lockers.get(); } public boolean lock(String key) { Map<String, Integer> refs = getLockers(); Integer refCount = refs.get(key); if (refCount != null) { refs.put(key, refCount + 1); return true; } if (!this.set(key)) { return false; } refs.put(key, 1); return true; } public boolean unlock(String key) { Map<String, Integer> refs = getLockers(); Integer refCount = refs.get(key); if (refCount == null) { return false; } refCount -= 1; if (refCount > 0) { refs.put(key, refCount); } else { refs.remove(key); this.del(key); } return true; } } @Test public void runJedisWithReentrantLock() { JedisWithReentrantLock redis = new JedisWithReentrantLock(jedis); System.out.println(redis.lock("alex")); System.out.println(redis.lock("alex")); System.out.println(redis.unlock("alex")); System.out.println(redis.unlock("alex")); }
在集群环境下,这种方式是有缺陷的(数据不一致的情况)。比如在 Sentinel 集群中,主节点挂掉时(原先第一个客户端在主节点中申请成功了一把锁),从节点A 会取而代之并晋升为主(但是这把锁还没有来得及同步),虽然客户端上却并没有明显感知,但是这时另一个客户端过来请求 从节点A 可以成功加锁,这样就会导致系统中同样一把锁被两个客户端同时持有。
主从发生故障转移,一般持续时间极短,数据不一致的情况基本上都是小概率事件。
上面的集群同步问题导致的缺陷,难道就没有解决方案吗?
为此Antirez 发明了 Redlock 算法,它的流程比较复杂,不过已经有了很多开源的实现。
原理
使用 Redlock,需要提供多个 Redis 实例,这些实例之前相互独立没有主从关系。同很多分布式算法一样,redlock 也使用少数服从多数。
加锁时,它会向过半节点发送 set(key, value, nx, ex) 指令,只要过半节点 set 成功,那就认为加锁成功。释放锁时,需要向所有节点发送 del 指令。缺陷:因为 Redlock 需要向多个节点进行读写,意味着相比单实例 Redis 性能会下降一些。
注:Redlock算法还需要考虑出错重试、时钟漂移等很多细节问题
使用场景
如果你很在乎高可用性,希望挂了一台 redis 完全不受影响,那就应该考虑 redlock。
感谢各位的阅读!关于“Redis分布式锁有什么用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。