这篇文章主要介绍“基于Zookeeper怎么实现分布式锁”,在日常操作中,相信很多人在基于Zookeeper怎么实现分布式锁问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”基于Zookeeper怎么实现分布式锁”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
Zookeeper是一个分布式的,开源的分布式应用程序协调服务,是Hadoop和hbase的重要组件。
引用官网的图例:
特征:
zookeeper的数据机构是一种节点树的数据结构,zNode是基本的单位,znode是一种和unix文件系统相似的节点,可以往这个节点存储或向这个节点获取数据
通过客户端可以对znode进行数据操作,还可以注册watcher监控znode的改变
持久节点(Persistent)
持久顺序节点(Persistent_Sequential)
临时节点(Ephemeral)
临时顺序节点(Ephemeral_Sequential)
下载zookeeper,官网链接,https://zookeeper.apache.org/releases.html#download,去官网找到对应的软件下载到本地
修改配置文件,${ZOOKEEPER_HOME}\conf,找到zoo_sample.cfg文件,先备份一份,另外一份修改为zoo.cfg
解压后点击zkServer.cmd运行服务端:
在cmd窗口或者直接在idea编辑器里的terminal输入命令:
zkCli.cmd -server 127.0.0.1:2181
输入命令help查看帮助信息:
ZooKeeper -server host:port -client-configuration properties-file cmd args addWatch [-m mode] path # optional mode is one of [PERSISTENT, PERSISTENT_RECURSIVE] - default is PERSISTENT_RECURSIVE addauth scheme auth close config [-c] [-w] [-s] connect host:port create [-s] [-e] [-c] [-t ttl] path [data] [acl] delete [-v version] path deleteall path [-b batch size] delquota [-n|-b|-N|-B] path get [-s] [-w] path getAcl [-s] path getAllChildrenNumber path getEphemerals path history listquota path ls [-s] [-w] [-R] path printwatches on|off quit reconfig [-s] [-v version] [[-file path] | [-members serverID=host:port1:port2;port3[,...]*]] | [-add serverId=host:port1:port2;port3[,...]]* [-remove serverId[,...]*] redo cmdno removewatches path [-c|-d|-a] [-l] set [-s] [-v version] path data setAcl [-s] [-v version] [-R] path acl setquota -n|-b|-N|-B val path stat [-w] path sync path version whoami
create [-s] [-e] [-c] [-t ttl] path [data] [acl]
,-s
表示顺序节点,-e
表示临时节点,若不指定表示持久节点,acl
是来进行权限控制的
[zk: 127.0.0.1:2181(CONNECTED) 1] create -s /zk-test 0 Created /zk-test0000000000
查看
[zk: 127.0.0.1:2181(CONNECTED) 4] ls / [zk-test0000000000, zookeeper]
设置修改节点数据
set /zk-test 123
获取节点数据
get /zk-test
ps,zookeeper命令详情查看help帮助文档,也可以去官网看看文档
ok,然后java写个例子,进行watcher监听
package com.example.concurrent.zkSample; import org.I0Itec.zkclient.IZkDataListener; import org.I0Itec.zkclient.ZkClient; /** * <pre> * Zookeeper 例子 * </pre> * * <pre> * @author mazq * 修改记录 * 修改后版本: 修改人: 修改日期: 2021/12/09 16:57 修改内容: * </pre> */ public class ZookeeperSample { public static void main(String[] args) { ZkClient client = new ZkClient("localhost:2181"); client.setZkSerializer(new MyZkSerializer()); client.subscribeDataChanges("/zk-test", new IZkDataListener() { @Override public void handleDataChange(String dataPath, Object data) throws Exception { System.out.println("监听到节点数据改变!"); } @Override public void handleDataDeleted(String dataPath) throws Exception { System.out.println("监听到节点数据被删除了"); } }); try { Thread.sleep(1000 * 60 * 2); } catch (InterruptedException e) { e.printStackTrace(); } } }
Zookeeper有什么典型的应用场景:
注册中心(Dubbo)
命名服务
Master选举
集群管理
分布式队列
分布式锁
Zookeeper适合用来做分布式锁,然后具体实现是利用什么原理?我们知道zookeeper是类似于unix的文件系统,文件系统我们也知道在一个文件夹下面,会有文件名称不能一致的特性的,也就是互斥的特性。同样zookeeper也有这个特性,在同个znode节点下面,子节点命名不能重复。所以利用这个特性可以来实现分布式锁
业务场景:在高并发的情况下面进行订单场景,这是一个典型的电商场景
自定义的Zookeeper序列化类:
package com.example.concurrent.zkSample; import org.I0Itec.zkclient.exception.ZkMarshallingError; import org.I0Itec.zkclient.serialize.ZkSerializer; import java.io.UnsupportedEncodingException; public class MyZkSerializer implements ZkSerializer { private String charset = "UTF-8"; @Override public byte[] serialize(Object o) throws ZkMarshallingError { return String.valueOf(o).getBytes(); } @Override public Object deserialize(byte[] bytes) throws ZkMarshallingError { try { return new String(bytes , charset); } catch (UnsupportedEncodingException e) { throw new ZkMarshallingError(); } } }
订单编号生成器类,因为SimpleDateFormat是线程不安全的,所以还是要加上ThreadLocal
package com.example.concurrent.zkSample; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Date; import java.util.concurrent.atomic.AtomicInteger; public class OrderCodeGenerator { private static final String DATE_FORMAT = "yyyyMMddHHmmss"; private static AtomicInteger ai = new AtomicInteger(0); private static int i = 0; private static ThreadLocal<SimpleDateFormat> threadLocal = new ThreadLocal<SimpleDateFormat>() { @Override protected SimpleDateFormat initialValue() { return new SimpleDateFormat(DATE_FORMAT); } }; public static DateFormat getDateFormat() { return (DateFormat) threadLocal.get(); } public static String generatorOrderCode() { try { return getDateFormat().format(new Date(System.currentTimeMillis())) + i++; } finally { threadLocal.remove(); } } }
pom.xml加上zookeeper客户端的配置:
<dependency> <groupId>com.101tec</groupId> <artifactId>zkclient</artifactId> <version>0.10</version> </dependency>
实现一个zookeeper分布式锁,思路是获取节点,这个是多线程竞争的,能获取到锁,也就是创建节点成功,就执行业务,其它抢不到锁的线程,阻塞等待,注册watcher监听锁是否释放了,释放了,取消注册watcher,继续抢锁
package com.example.concurrent.zkSample; import lombok.extern.slf4j.Slf4j; import org.I0Itec.zkclient.IZkDataListener; import org.I0Itec.zkclient.ZkClient; import org.I0Itec.zkclient.exception.ZkNodeExistsException; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; @Slf4j public class ZKDistributeLock implements Lock { private String localPath; private ZkClient zkClient; ZKDistributeLock(String localPath) { super(); this.localPath = localPath; zkClient = new ZkClient("localhost:2181"); zkClient.setZkSerializer(new MyZkSerializer()); } @Override public void lock() { while (!tryLock()) { waitForLock(); } } private void waitForLock() { // 创建countdownLatch协同 CountDownLatch countDownLatch = new CountDownLatch(1); // 注册watcher监听 IZkDataListener listener = new IZkDataListener() { @Override public void handleDataChange(String path, Object o) throws Exception { //System.out.println("zookeeper data has change!!!"); } @Override public void handleDataDeleted(String s) throws Exception { // System.out.println("zookeeper data has delete!!!"); // 监听到锁释放了,释放线程 countDownLatch.countDown(); } }; zkClient.subscribeDataChanges(localPath , listener); // 线程等待 if (zkClient.exists(localPath)) { try { countDownLatch.await(); } catch (InterruptedException e) { e.printStackTrace(); } } // 取消注册 zkClient.unsubscribeDataChanges(localPath , listener); } @Override public void unlock() { zkClient.delete(localPath); } @Override public boolean tryLock() { try { zkClient.createEphemeral(localPath); } catch (ZkNodeExistsException e) { return false; } return true; } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void lockInterruptibly() throws InterruptedException { } @Override public Condition newCondition() { return null; } }
订单服务api
package com.example.concurrent.zkSample; public interface OrderService { void createOrder(); }
订单服务实现类,加上zookeeper分布式锁
package com.example.concurrent.zkSample; import java.util.concurrent.locks.Lock; public class OrderServiceInvoker implements OrderService{ @Override public void createOrder() { Lock zkLock = new ZKDistributeLock("/zk-test"); //Lock zkLock = new ZKDistributeImproveLock("/zk-test"); String orderCode = null; try { zkLock.lock(); orderCode = OrderCodeGenerator.generatorOrderCode(); } finally { zkLock.unlock(); } System.out.println(String.format("thread name : %s , orderCode : %s" , Thread.currentThread().getName(), orderCode)); } }
因为搭建分布式环境比较繁琐,所以这里使用juc里的并发协同工具类,CyclicBarrier模拟多线程并发的场景,模拟分布式环境的高并发场景
package com.example.concurrent.zkSample; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; public class ConcurrentDistributeTest { public static void main(String[] args) { // 多线程数 int threadSize = 30; // 创建多线程循环屏障 CyclicBarrier cyclicBarrier = new CyclicBarrier(threadSize , ()->{ System.out.println("准备完成!"); }) ; // 模拟分布式集群的场景 for (int i = 0 ; i < threadSize ; i ++) { new Thread(()->{ OrderService orderService = new OrderServiceInvoker(); // 所有线程都等待 try { cyclicBarrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } // 模拟并发请求 orderService.createOrder(); }).start(); } } }
跑多几次,没有发现订单号重复的情况,分布式锁还是有点效果的
thread name : Thread-6 , orderCode : 202112100945110
thread name : Thread-1 , orderCode : 202112100945111
thread name : Thread-13 , orderCode : 202112100945112
thread name : Thread-11 , orderCode : 202112100945113
thread name : Thread-14 , orderCode : 202112100945114
thread name : Thread-0 , orderCode : 202112100945115
thread name : Thread-8 , orderCode : 202112100945116
thread name : Thread-17 , orderCode : 202112100945117
thread name : Thread-10 , orderCode : 202112100945118
thread name : Thread-5 , orderCode : 202112100945119
thread name : Thread-2 , orderCode : 2021121009451110
thread name : Thread-16 , orderCode : 2021121009451111
thread name : Thread-19 , orderCode : 2021121009451112
thread name : Thread-4 , orderCode : 2021121009451113
thread name : Thread-18 , orderCode : 2021121009451114
thread name : Thread-3 , orderCode : 2021121009451115
thread name : Thread-9 , orderCode : 2021121009451116
thread name : Thread-12 , orderCode : 2021121009451117
thread name : Thread-15 , orderCode : 2021121009451118
thread name : Thread-7 , orderCode : 2021121009451219
注释加锁的代码,再加大并发数,模拟一下
package com.example.concurrent.zkSample; import java.util.concurrent.locks.Lock; public class OrderServiceInvoker implements OrderService{ @Override public void createOrder() { //Lock zkLock = new ZKDistributeLock("/zk-test"); //Lock zkLock = new ZKDistributeImproveLock("/zk-test"); String orderCode = null; try { //zkLock.lock(); orderCode = OrderCodeGenerator.generatorOrderCode(); } finally { //zkLock.unlock(); } System.out.println(String.format("thread name : %s , orderCode : %s" , Thread.currentThread().getName(), orderCode)); } }
跑多几次,发现出现订单号重复的情况,所以分布式锁是可以保证分布式环境的线程安全的
上面例子是一种非公平锁的方式,一旦监听到锁释放了,所有线程都会去抢锁,所以容易出现“惊群效应”:
巨大的服务器性能损耗
网络冲击
可能造成宕机
所以,需要改进分布式锁,改成一种公平锁的模式
公平锁:多个线程按照申请锁的顺序去获取锁,线程会在队列里排队,按照顺序去获取锁。只有队列第1个线程才能获取到锁,获取到锁之后,其它线程都会阻塞等待,等到持有锁的线程释放锁,其它线程才会被唤醒。
非公平锁:多个线程都会去竞争获取锁,获取不到就进入队列等待,竞争得到就直接获取锁;然后持有锁的线程释放锁之后,所有等待的线程就都会去竞争锁。
流程图:
代码改进:
package com.example.concurrent.zkSample; import org.I0Itec.zkclient.IZkDataListener; import org.I0Itec.zkclient.ZkClient; import org.I0Itec.zkclient.exception.ZkNodeExistsException; import java.util.Collections; import java.util.List; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; public class ZKDistributeImproveLock implements Lock { private String localPath; private ZkClient zkClient; private String currentPath; private String beforePath; ZKDistributeImproveLock(String localPath) { super(); this.localPath = localPath; zkClient = new ZkClient("localhost:2181"); zkClient.setZkSerializer(new MyZkSerializer()); if (!zkClient.exists(localPath)) { try { this.zkClient.createPersistent(localPath); } catch (ZkNodeExistsException e) { } } } @Override public void lock() { while (!tryLock()) { waitForLock(); } } private void waitForLock() { CountDownLatch countDownLatch = new CountDownLatch(1); // 注册watcher IZkDataListener listener = new IZkDataListener() { @Override public void handleDataChange(String dataPath, Object data) throws Exception { } @Override public void handleDataDeleted(String dataPath) throws Exception { // 监听到锁释放,唤醒线程 countDownLatch.countDown(); } }; zkClient.subscribeDataChanges(beforePath, listener); // 线程等待 if (zkClient.exists(beforePath)) { try { countDownLatch.await(); } catch (InterruptedException e) { e.printStackTrace(); } } // 取消注册 zkClient.unsubscribeDataChanges(beforePath , listener); } @Override public void unlock() { zkClient.delete(this.currentPath); } @Override public boolean tryLock() { if (this.currentPath == null) { currentPath = zkClient.createEphemeralSequential(localPath +"/" , "123"); } // 获取Znode节点下面的所有子节点 List<String> children = zkClient.getChildren(localPath); // 列表排序 Collections.sort(children); if (currentPath.equals(localPath + "/" + children.get(0))) { // 当前节点是第1个节点 return true; } else { //得到当前的索引号 int index = children.indexOf(currentPath.substring(localPath.length() + 1)); //取到前一个 beforePath = localPath + "/" + children.get(index - 1); } return false; } @Override public boolean tryLock(long time, TimeUnit unit) throws InterruptedException { return false; } @Override public void lockInterruptibly() throws InterruptedException { } @Override public Condition newCondition() { return null; } }
thread name : Thread-13 , orderCode : 202112100936140
thread name : Thread-3 , orderCode : 202112100936141
thread name : Thread-14 , orderCode : 202112100936142
thread name : Thread-16 , orderCode : 202112100936143
thread name : Thread-1 , orderCode : 202112100936144
thread name : Thread-9 , orderCode : 202112100936145
thread name : Thread-4 , orderCode : 202112100936146
thread name : Thread-5 , orderCode : 202112100936147
thread name : Thread-7 , orderCode : 202112100936148
thread name : Thread-2 , orderCode : 202112100936149
thread name : Thread-17 , orderCode : 2021121009361410
thread name : Thread-15 , orderCode : 2021121009361411
thread name : Thread-0 , orderCode : 2021121009361412
thread name : Thread-10 , orderCode : 2021121009361413
thread name : Thread-18 , orderCode : 2021121009361414
thread name : Thread-19 , orderCode : 2021121009361415
thread name : Thread-8 , orderCode : 2021121009361416
thread name : Thread-12 , orderCode : 2021121009361417
thread name : Thread-11 , orderCode : 2021121009361418
thread name : Thread-6 , orderCode : 2021121009361419
Redis和Zookeeper都可以用来实现分布式锁,两者可以进行对比:
基于Redis实现分布式锁
实现比较复杂
存在死锁的可能
性能比较好,基于内存 ,而且保证的是高可用,redis优先保证的是AP(分布式CAP理论)
基于Zookeeper实现分布式锁
实现相对简单
可靠性高,因为zookeeper保证的是CP(分布式CAP理论)
性能相对较好 并发1~2万左右,并发太高,还是redis性能好
到此,关于“基于Zookeeper怎么实现分布式锁”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。