本篇内容主要讲解“python中apply函数怎么用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python中apply函数怎么用”吧!
函数原型:
DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
1.该函数最有用的是第一个参数,这个参数是函数,相当于C/C++的函数指针。
2.这个函数需要自己实现,函数的传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series的数据
结构传入给自己实现的函数中,我们在函数中实现对Series
不同属性之间的计算,返回一个结果,则apply函数
会自动遍历每一行DataFrame
的数据,最后将所有结果组合成一个Series
数据结构
并返回。
3.apply函数常与groupby
函数一起使用,如下图所示:
4.举栗子
对指定列进行操作:
data=np.arange(0,16).reshape(4,4) data=pd.DataFrame(data,columns=['0','1','2','3']) def f(x): return x-1 print(data) print(data.ix[:,['1','2']].apply(f)) 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 1 2 0 0 1 1 4 5 2 8 9 3 12 13
对行操作:
data=np.arange(0,16).reshape(4,4) data=pd.DataFrame(data,columns=['0','1','2','3']) def f(x): return x-1 print(data) print(data.ix[[0,1],:].apply(f)) 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 0 1 2 3 0 -1 0 1 2 1 3 4 5 6
整体对列操作:
data=np.arange(0,16).reshape(4,4) data=pd.DataFrame(data,columns=['0','1','2','3']) def f(x): return x.max() print(data) print(data.apply(f)) 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 0 12 1 13 2 14 3 15 dtype: int64
整体对行操作:
data=np.arange(0,16).reshape(4,4) data=pd.DataFrame(data,columns=['0','1','2','3']) def f(x): return x.max() print(data) print(data.apply(f,axis=1)) 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 0 3 1 7 2 11 3 15 dtype: int64
到此,相信大家对“python中apply函数怎么用”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。