温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Hadoop2.6.0学习笔记(六)TextOutputFormat及RecordWriter解析

发布时间:2020-10-21 10:15:40 来源:网络 阅读:13461 作者:luchunli1985 栏目:大数据

鲁春利的工作笔记,谁说程序员不能有文艺范?



MapReduce提供了许多默认的输出格式,如TextOutputFormat、KeyValueOutputFormat等。MapReduce中输出文件的个数与Reduce的个数一致,默认情况下有一个Reduce,输出只有一个文件,文件名为part-r-00000,文件内容的行数与map输出中不同key的个数一致。如果有两个Reduce,输出的结果就有两个文件,第一个为part-r-00000,第二个为part-r-00001,依次类推。


MapReduce中默认实现输出功能的类是TextOutputFormat,它主要用来将文本数据输出到HDFS上。

public class TextOutputFormat<K, V> extends FileOutputFormat<K, V> {
  public static String SEPERATOR = "mapreduce.output.textoutputformat.separator";
  // 定义了内部类用来实现输出,换行符为\n,分隔符为\t(可以通过参数修改)
  protected static class LineRecordWriter<K, V> extends RecordWriter<K, V> {
    public LineRecordWriter(DataOutputStream out) {    // 实际为FSDataOutputStream
      this(out, "\t");
    }
    /** 主要的结构就是两个方法:write和close **/
    public synchronized void write(K key, V value)throws IOException {
      boolean nullKey = key == null || key instanceof NullWritable;
      boolean nullValue = value == null || value instanceof NullWritable;
      if (nullKey && nullValue) {
        return;
      }
      if (!nullKey) {
        writeObject(key);    // 将Text类型数据处理成字节数组
      }
      if (!(nullKey || nullValue)) {
        out.write(keyValueSeparator);
      }
      if (!nullValue) {
        writeObject(value);
      }
      out.write(newline);    // 换行(newline = "\n".getBytes(utf8);)
    }

    public synchronized void close(TaskAttemptContext context) throws IOException {
      out.close();
    }
  }
  
  // 内部类定义结束,下面为TextOutputFormat唯一的关键方法
  public RecordWriter<K, V>  getRecordWriter(TaskAttemptContext job)
                        throws IOException, InterruptedException {
    // 1、根据Configuration判定是否需要压缩,若需要压缩获取压缩格式及后缀;
    // 2. 获取需要生成的文件路径,getDefaultWorkFile(job, extension)
    // 3. 根据文件生成FSDataOutputStream对象,并return new LineRecordWriter。
    Configuration conf = job.getConfiguration();
    boolean isCompressed = getCompressOutput(job);
    String keyValueSeparator= conf.get(SEPERATOR, "\t");
    CompressionCodec codec = null;
    String extension = "";
    if (isCompressed) {    // 如果是压缩,则根据压缩获取扩展名
      Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job, GzipCodec.class);
      codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, conf);
      extension = codec.getDefaultExtension();
    }
    // getDefaultWorkFile用来获取保存输出数据的文件名,由FileOutputFormat类实现
    Path file = getDefaultWorkFile(job, extension);
    FileSystem fs = file.getFileSystem(conf);
    
    // 获取writer对象
    if (!isCompressed) {
      FSDataOutputStream fileOut = fs.create(file, false);
      return new LineRecordWriter<K, V>(fileOut, keyValueSeparator);
    } else {
      FSDataOutputStream fileOut = fs.create(file, false);
      DataOutputStream dataOut = new DataOutputStream(codec.createOutputStream(fileOut));
      return new LineRecordWriter<K, V>(dataOut, keyValueSeparator);
    }
  }
}

通过TextFileOutput类分析出具体需要将数据保存到HDFS的什么位置上,是通过FileOutputFormat类的getDefaultWorkFile方法来获取的。实际上对于MapReduce中所有的输出都需要继承OutputFormat,先看一下OutputFormat的类定义。

/**
 * OutputFormat定义了Map-Reduce作业的输出规范,如:
 * 1、校验,如指定的输出目录是否存在,输出的空间是否足够大;
 * 2、指定RecordWriter来将MapReduce的输出写入到FileSystem(一般为HDFS);
 */
public abstract class OutputFormat<K, V> {
  // 获取与当前task相关联的RecordWriter对象
  public abstract RecordWriter<K, V> getRecordWriter(TaskAttemptContext context) 
                              throws IOException, InterruptedException;
                              
  // 当提交job时检查当前job的输出规范是否有效,如输出目录是否已存在等
  public abstract void checkOutputSpecs(JobContext context) 
                              throws IOException, InterruptedException;
                              
  // Get the output committer for this output format. 
  // This is responsible for ensuring the output is committed correctly.
  public abstract OutputCommitter getOutputCommitter(TaskAttemptContext context) 
                              throws IOException, InterruptedException;
}

在TextOutputFormat中实现了getRecordWriter,而TextOutputFormat的是FileOutputFormat的子类,而FileOutputFormat是的子类。

/** 用来实现写数据到HDFS的OutputFormat的基类 **/
public abstract class FileOutputFormat<K, V> extends OutputFormat<K, V> {
  /** 当有多个分区时,会有多个输出文件,通过NUMBER_FORMAT定义输出文件编号,如part-r-00000,00001等。 **/
  private static final NumberFormat NUMBER_FORMAT = NumberFormat.getInstance();
  /** 默认的输出文件为part开头的,可以通过该参数给指定一个输出的文件名 **/
  protected static final String BASE_OUTPUT_NAME = "mapreduce.output.basename";
  protected static final String PART = "part";
  static {
    NUMBER_FORMAT.setMinimumIntegerDigits(5);
    NUMBER_FORMAT.setGroupingUsed(false);
  }
  
  // 对MapReduce的输出可以指定是否压缩及压缩形式,通过配置文件mapred-site.xml进行配置
  // 默认为false
  public static final String COMPRESS ="mapreduce.output.fileoutputformat.compress";
  // 默认为org.apache.hadoop.io.compress.DefaultCodec
  public static final String COMPRESS_CODEC = "mapreduce.output.fileoutputformat.compress.codec";
  // 默认为RECORD,针对每行记录进行压缩。如果设置为BLOCK,针对一组记录进行压缩。
  public static final String COMPRESS_TYPE = "mapreduce.output.fileoutputformat.compress.type";
  
  // 设置map-reduce job的输出目录
  public static void setOutputPath(Job job, Path outputDir) {
    try {
      outputDir = outputDir.getFileSystem(job.getConfiguration()).makeQualified(outputDir);
    } catch (IOException e) {
        // Throw the IOException as a RuntimeException to be compatible with MR1
        throw new RuntimeException(e);
    }
    job.getConfiguration().set(FileOutputFormat.OUTDIR, outputDir.toString());
  }
  
  // 进行check检查
  public void checkOutputSpecs(JobContext job) throws FileAlreadyExistsException, IOException{
   // 1. 判定是否设定了输出目录(FileOutputFormat.setOutputPath);
   // 2. 判定输出目录是否存在(需指定空目录)。
  }
  
  // 获取输出的committer对象,MRv2引入的,以允许用户自己定制合适的OutputCommitter实现
  public synchronized OutputCommitter getOutputCommitter(TaskAttemptContext context) throws IOException {
    if (committer == null) {
      Path output = getOutputPath(context);
      committer = new FileOutputCommitter(output, context);
    }
    return committer;
  }
  
  // 获取当前output format对应的默认输出路径和文件名
  public Path getDefaultWorkFile(TaskAttemptContext context, String extension) throws IOException{
    FileOutputCommitter committer = (FileOutputCommitter) getOutputCommitter(context);
    return new Path(committer.getWorkPath(), getUniqueFile(context, getOutputName(context), extension));
  }
  
   /**
   * Generate a unique filename, based on the task id, name, and extension
   * 获取文件名,如part-r-00000,00001等
   * @param context the task that is calling this
   * @param name the base filename
   * @param extension the filename extension
   * @return a string like $name-[mrsct]-$id$extension
   */
  public synchronized static String getUniqueFile(TaskAttemptContext context, String name, String extension) {
    TaskID taskId = context.getTaskAttemptID().getTaskID();
    int partition = taskId.getId();
    StringBuilder result = new StringBuilder();
    result.append(name);
    result.append('-');
    result.append(TaskID.getRepresentingCharacter(taskId.getTaskType()));
    result.append('-');
    result.append(NUMBER_FORMAT.format(partition));
    result.append(extension);
    return result.toString();
  }
}


任务的类型是通过类org.apache.hadoop.mapreduce.TaskID$CharTaskTypeMaps获取

static String allTaskTypes = "(m|r|s|c|t)";
static {
  setupTaskTypeToCharMapping();
  setupCharToTaskTypeMapping();
}

private static void setupTaskTypeToCharMapping() {
  typeToCharMap.put(TaskType.MAP, 'm');
  typeToCharMap.put(TaskType.REDUCE, 'r');
  typeToCharMap.put(TaskType.JOB_SETUP, 's');
  typeToCharMap.put(TaskType.JOB_CLEANUP, 'c');
  typeToCharMap.put(TaskType.TASK_CLEANUP, 't');
}

private static void setupCharToTaskTypeMapping() {
  charToTypeMap.put('m', TaskType.MAP);
  charToTypeMap.put('r', TaskType.REDUCE);
  charToTypeMap.put('s', TaskType.JOB_SETUP);
  charToTypeMap.put('c', TaskType.JOB_CLEANUP);
  charToTypeMap.put('t', TaskType.TASK_CLEANUP);
}

// 获取part-r-00000中间的那个r
static char getRepresentingCharacter(TaskType type) {
  return typeToCharMap.get(type);
}


应用示例:把首字母相同的单词放到一个文件里面

输入文件内容:

[hadoop@nnode code]$ 
[hadoop@nnode code]$ hdfs dfs -ls /data
Found 2 items
-rw-r--r--   1 hadoop hadoop         47 2015-06-09 17:59 /data/file1.txt
-rw-r--r--   2 hadoop hadoop         36 2015-06-09 17:59 /data/file2.txt
[hadoop@nnode code]$ hdfs dfs -text /data/file1.txt
hello   world
hello   markhuang
hello   hadoop
[hadoop@nnode code]$ hdfs dfs -text /data/file2.txt
hadoop  ok
hadoop  fail
hadoop  2.3
[hadoop@nnode code]$


自定义OutputFormat:

package com.lucl.hadoop.mapreduce.multiple;

import java.io.IOException;
import java.util.HashMap;
import java.util.Iterator;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapreduce.OutputCommitter;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.ReflectionUtils;

/**
 * @author luchunli
 * @description 自定义OutputFormat,这里继承TextOutputFormat,避免了自己实现OutputCommitter,<br/>
 * MapReduce中key要求为WritableComparable类型的,value要求为Writable类型的.
 */
public class MultipleOutputFormat<K extends WritableComparable<?>, V extends Writable>
extends TextOutputFormat<K, V> {

    /**
     * OutputFormat通过获取Writer对象,将数据输出到指定目录特定名称的文件中。
     */
    private MultipleRecordWriter writer = null;
    
    // 在TextOutputFormat实现的时候对于每一个map或task任务都有一个唯一的标识,通过TaskID来控制,
    // 其在输出时文件名是固定的,每一个输出文件对应一个LineRecordWriter,取其输出流对象(FSDataOutputStream),
    // 在输出时通过输出流对象实现数据输出。
    // 
    // 但是在这里实现的时候,实际上是要求对于一个task任务,将它需要输出的数据写入多个文件,文件是不固定的;
    // 因此在每次输出的时候判定对应的文件是否已经有Writer对象,若有则通过该对象继续输出,否则创建新的。
    @Override
    public RecordWriter<K, V> getRecordWriter(TaskAttemptContext context)
            throws IOException, InterruptedException {
        if (null == writer) {
            writer = new MultipleRecordWriter(context, this.getTaskOutputPath(context));
        }
        return writer;
    }

    // 获取任务的输出路径,仍然采用从committer中获取,TaskAttemptContext封装了task的上下文,后续分析。
    // 在TextOutputFormat中是通过调用父类(FileOutputFormat)的getDefaultWorkFile来实现的,
    // 而getDefaultWorkFile中获取MapReduce定义的默认的文件名,如需要自定义文件名,需自己实现
    private Path getTaskOutputPath(TaskAttemptContext context) throws IOException {
        Path workPath = null;
        OutputCommitter committer = super.getOutputCommitter(context);
        
        if (committer instanceof FileOutputCommitter) {
            // Get the directory that the task should write results into.
            workPath = ((FileOutputCommitter) committer).getWorkPath();
        } else {
            // Get the {@link Path} to the output directory for the map-reduce job.
            // context.getConfiguration().get(FileOutputFormat.OUTDIR);
            Path outputPath = super.getOutputPath(context);
            if (null == outputPath) {
                throw new IOException("Undefined job output-path.");
            }
            workPath = outputPath;
        }
        
        return workPath;
    }

    /**
     * @author luchunli
     * @description 自定义RecordWriter, MapReduce的TextOutputFormat的LineRecordWriter也是内部类,这里参照其实现方式
     */
    public class MultipleRecordWriter extends RecordWriter<K, V> {

        /** RecordWriter的缓存 **/
        private HashMap<String, RecordWriter<K, V>> recordWriters = null;
        
        private TaskAttemptContext context;
        
        /** 输出目录 **/
        private Path workPath = null;
        
        public MultipleRecordWriter () {}
        
        public MultipleRecordWriter(TaskAttemptContext context, Path path) {
            super();
            this.context = context;
            this.workPath = path;
            this.recordWriters = new HashMap<String, RecordWriter<K, V>>(); 
        }

        @Override
        public void write(K key, V value) throws IOException, InterruptedException {
            String baseName = generateFileNameForKeyValue (key, value, this.context.getConfiguration());
            RecordWriter<K, V> rw = this.recordWriters.get(baseName);
            if (null == rw) {
                rw = this.getBaseRecordWriter(context, baseName);
                this.recordWriters.put(baseName, rw);
            }
            // 这里实际仍然为通过LineRecordWriter来实现的
            rw.write(key, value);        
        }

        // 通过MultipleRecordWriter对LineRecordWriter进行了封装,对于同一个task在输出的时候进行了拆分
        // 在MapReduce实现中,默认情况下只有一个reduce(Reduce的数量分区部分分析),根据之前的示例所有的输出都将写入到part-r-00000的文件中,
        // 这里所做的工作就是屏蔽了到part-r-00000的输出,而是将同一个reduce的数据拆分为多个文件。
        private RecordWriter<K, V> getBaseRecordWriter(TaskAttemptContext context, String baseName) throws IOException {
            Configuration conf = context.getConfiguration();
            
            boolean isCompressed = getCompressOutput(context);
            // 在LineRecordWriter的实现中,分隔符是通过变量如下方式指定的:
            // public static String SEPERATOR = "mapreduce.output.textoutputformat.separator";
            // String keyValueSeparator= conf.get(SEPERATOR, "\t");
            // 这里给了个逗号作为分割
            String keyValueSeparator = ",";
            
            RecordWriter<K, V> rw = null;
            if (isCompressed) {
                Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(context, GzipCodec.class);
                CompressionCodec codec = ReflectionUtils.newInstance(codecClass, conf);
                Path file = new Path(workPath, baseName + codec.getDefaultExtension());
                FSDataOutputStream out = file.getFileSystem(conf).create(file, false);
                rw = new LineRecordWriter<>(out, keyValueSeparator);
            } else {
                Path file = new Path(workPath, baseName);
                FSDataOutputStream out = file.getFileSystem(conf).create(file, false);
                rw = new LineRecordWriter<>(out, keyValueSeparator);
            }
            
            return rw;
        }

        @Override
        public void close(TaskAttemptContext context) throws IOException, InterruptedException {
            Iterator<RecordWriter<K, V>> it = this.recordWriters.values().iterator();
            while (it.hasNext()) {
                RecordWriter<K, V> rw = it.next();
                rw.close(context);
            }
            this.recordWriters.clear();
        }
        
        /** 获取生成的文件的后缀名 **/
        private String generateFileNameForKeyValue(K key, V value, Configuration configuration) {
            char c = key.toString().toLowerCase().charAt(0); 
            if (c >= 'a' && c <= 'z') {
                return c + ".txt";
            }
            return "other.txt";
        }
    }
}


实现Mapper

package com.lucl.hadoop.mapreduce.multiple;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * @author luchunli
 * @description 自定义Mapper
 */
public class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    private static final IntWritable one = new IntWritable(1);
    private Text text = new Text();
    
    @Override
    protected void map(LongWritable key, Text value, Context context) 
            throws IOException, InterruptedException {
        StringTokenizer token = new StringTokenizer(value.toString());
        while (token.hasMoreTokens()) {
            String word = token.nextToken();
            text.set(word);
            
            context.write(text, one);
        }
    }
}


实现Reducer

package com.lucl.hadoop.mapreduce.multiple;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * @author luchunli
 * @description 自定义Reducer
 */
public class TokenizerReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> value, Context context)
            throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable intWritable : value) {
            sum += intWritable.get();
        }
        context.write(key, new IntWritable(sum));
    }
}


实现Driver

package com.lucl.hadoop.mapreduce.multiple;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * @author luchunli
 * @description 驱动类
 */
public class MultipleWorkCount extends Configured implements Tool {

    public static void main(String[] args) {
        try {
            ToolRunner.run(new MultipleWorkCount(), args);
        } catch (Exception e) {
            e.printStackTrace();
        }

    }
    
    @Override
    public int run(String[] args) throws Exception {
        Job job = Job.getInstance(this.getConf(), this.getClass().getSimpleName());
        
        job.setJarByClass(MultipleWorkCount.class);
        
        FileInputFormat.addInputPath(job, new Path(args[0]));
        
        job.setMapperClass(TokenizerMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        job.setReducerClass(TokenizerReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputKeyClass(IntWritable.class);
        
        job.setOutputFormatClass(MultipleOutputFormat.class);
        
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        return job.waitForCompletion(true) ? 0 : 1;
    }

}


调用执行

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /2015120500010
15/12/05 16:45:54 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:8032
15/12/05 16:45:55 INFO input.FileInputFormat: Total input paths to process : 2
15/12/05 16:45:55 INFO mapreduce.JobSubmitter: number of splits:2
15/12/05 16:45:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449302623953_0004
15/12/05 16:45:56 INFO impl.YarnClientImpl: Submitted application application_1449302623953_0004
15/12/05 16:45:56 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1449302623953_0004/
15/12/05 16:45:56 INFO mapreduce.Job: Running job: job_1449302623953_0004
15/12/05 16:46:27 INFO mapreduce.Job: Job job_1449302623953_0004 running in uber mode : false
15/12/05 16:46:27 INFO mapreduce.Job:  map 0% reduce 0%
15/12/05 16:46:56 INFO mapreduce.Job:  map 50% reduce 0%
15/12/05 16:46:58 INFO mapreduce.Job:  map 100% reduce 0%
15/12/05 16:47:16 INFO mapreduce.Job:  map 100% reduce 100%
15/12/05 16:47:18 INFO mapreduce.Job: Job job_1449302623953_0004 completed successfully
15/12/05 16:47:18 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=152
                FILE: Number of bytes written=323517
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=271
                HDFS: Number of bytes written=55
                HDFS: Number of read operations=9
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=7
        Job Counters 
                Launched map tasks=2
                Launched reduce tasks=1
                Data-local map tasks=2
                Total time spent by all maps in occupied slots (ms)=58249
                Total time spent by all reduces in occupied slots (ms)=17197
                Total time spent by all map tasks (ms)=58249
                Total time spent by all reduce tasks (ms)=17197
                Total vcore-seconds taken by all map tasks=58249
                Total vcore-seconds taken by all reduce tasks=17197
                Total megabyte-seconds taken by all map tasks=59646976
                Total megabyte-seconds taken by all reduce tasks=17609728
        Map-Reduce Framework
                Map input records=6
                Map output records=12
                Map output bytes=122
                Map output materialized bytes=158
                Input split bytes=188
                Combine input records=0
                Combine output records=0
                Reduce input groups=7
                Reduce shuffle bytes=158
                Reduce input records=12
                Reduce output records=7
                Spilled Records=24
                Shuffled Maps =2
                Failed Shuffles=0
                Merged Map outputs=2
                GC time elapsed (ms)=313
                CPU time spent (ms)=4770
                Physical memory (bytes) snapshot=511684608
                Virtual memory (bytes) snapshot=2545770496
                Total committed heap usage (bytes)=257171456
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=83
        File Output Format Counters 
                Bytes Written=55
[hadoop@nnode code]$


查看输出结果:

[hadoop@nnode code]$ hdfs dfs -ls /2015120500010
Found 7 items
-rw-r--r--   2 hadoop hadoop          0 2015-12-05 16:47 /2015120500010/_SUCCESS
-rw-r--r--   2 hadoop hadoop          7 2015-12-05 16:47 /2015120500010/f.txt
-rw-r--r--   2 hadoop hadoop         17 2015-12-05 16:47 /2015120500010/h.txt
-rw-r--r--   2 hadoop hadoop         12 2015-12-05 16:47 /2015120500010/m.txt
-rw-r--r--   2 hadoop hadoop          5 2015-12-05 16:47 /2015120500010/o.txt
-rw-r--r--   2 hadoop hadoop          6 2015-12-05 16:47 /2015120500010/other.txt
-rw-r--r--   2 hadoop hadoop          8 2015-12-05 16:47 /2015120500010/w.txt
[hadoop@nnode code]$ hdfs dfs -text /2015120500010/h.txt
hadoop,4
hello,3
[hadoop@nnode code]$ hdfs dfs -text /2015120500010/o.txt
ok,1
[hadoop@nnode code]$ hdfs dfs -text /2015120500010/other.txt
2.3,1
[hadoop@nnode code]$


错误记录:

1、java.lang.RuntimeException: java.lang.InstantiationException

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /2015120500001
15/12/05 16:18:19 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:8032
java.lang.RuntimeException: java.lang.InstantiationException
        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:131)
        at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:559)
        at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)
        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
        at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)
        at com.lucl.hadoop.mapreduce.multiple.MultipleWorkCount.run(MultipleWorkCount.java:49)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
        at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:84)
        at com.lucl.hadoop.mapreduce.multiple.MultipleWorkCount.main(MultipleWorkCount.java:22)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
        at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.lang.InstantiationException
        at sun.reflect.InstantiationExceptionConstructorAccessorImpl.newInstance(InstantiationExceptionConstructorAccessorImpl.java:48)
        at java.lang.reflect.Constructor.newInstance(Constructor.java:526)
        at org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:129)
        ... 19 more
[hadoop@nnode code]$

原因:

    由于之前还有一个子类,在Driver中是通过子类定义输出,后来感觉子类没有必要,于是去掉了,但是MultipleOutputFormat类定义仍然为abstract MultipleOutputFormat,没有把abstract给注释掉。


2、Error: java.io.IOException: Unable to initialize any output collector

[hadoop@nnode code]$ hadoop jar MultipleMR.jar /data /2015120500005
15/12/05 16:26:06 INFO client.RMProxy: Connecting to ResourceManager at nnode/192.168.137.117:8032
15/12/05 16:26:07 INFO input.FileInputFormat: Total input paths to process : 2
15/12/05 16:26:07 INFO mapreduce.JobSubmitter: number of splits:2
15/12/05 16:26:08 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1449302623953_0003
15/12/05 16:26:08 INFO impl.YarnClientImpl: Submitted application application_1449302623953_0003
15/12/05 16:26:08 INFO mapreduce.Job: The url to track the job: http://nnode:8088/proxy/application_1449302623953_0003/
15/12/05 16:26:08 INFO mapreduce.Job: Running job: job_1449302623953_0003
15/12/05 16:26:43 INFO mapreduce.Job: Job job_1449302623953_0003 running in uber mode : false
15/12/05 16:26:43 INFO mapreduce.Job:  map 0% reduce 0%
15/12/05 16:27:13 INFO mapreduce.Job: Task Id : attempt_1449302623953_0003_m_000000_0, Status : FAILED
Error: java.io.IOException: Unable to initialize any output collector
        at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:412)
        at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)
        at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:695)
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:767)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)

15/12/05 16:27:13 INFO mapreduce.Job: Task Id : attempt_1449302623953_0003_m_000001_0, Status : FAILED
Error: java.io.IOException: Unable to initialize any output collector
        at org.apache.hadoop.mapred.MapTask.createSortingCollector(MapTask.java:412)
        at org.apache.hadoop.mapred.MapTask.access$100(MapTask.java:81)
        at org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:695)
        at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:767)
        at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
        at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)

^C[hadoop@nnode code]$

原因:

    Text引用错了:com.sun.jersey.core.impl.provider.entity.XMLJAXBElementProvider.Text
    正确的引用:org.apache.hadoop.io.Text


说明:

attempt_1449302623953_0003_m_000000_0

通过第二个错误信息能看到map task的命名规则:

// TaskAttemptID represents the immutable and unique identifier for a task attempt. 
// Each task attempt is one particular instance of a Map or Reduce Task identified by TaskID. 
// An example TaskAttemptID is : attempt_200707121733_0003_m_000005_0
// zeroth task attempt for the fifth map task in the third job running at the jobtracker started at 200707121733
public class TaskAttemptID extends org.apache.hadoop.mapred.ID {
  protected static final String ATTEMPT = "attempt";
  private TaskID taskId;
  // ...... 
}


向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI