这篇文章主要介绍python如何使用plt.subplot(),文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
另一种可视化多个图形的方法是使用 plt.subplot(),
末尾没有 s
语法与之前略有不同:
plt.figure(figsize=(10,4))
ax1 = plt.subplot(1,2,1)
sns.histplot(data=df, x='tip', ax=ax1)
ax2 = plt.subplot(1,2,2)
sns.boxplot(data=df, x='tip', ax=ax2);
当我们想为多个图绘制相同类型的图形并在单个图中查看所有图形,该方法特别有用:
plt.figure(figsize=(14,4))
for i, col in enumerate(numerical):
ax = plt.subplot(1, len(numerical), i+1)
sns.boxplot(data=df, x=col, ax=ax)
我们同样能定制子图形。例如加个title
plt.figure(figsize=(14,4))
for i, col in enumerate(numerical):
ax = plt.subplot(1, len(numerical), i+1)
sns.boxplot(data=df, x=col, ax=ax)
ax.set\_title(f"Boxplot of {col}")
通过下面的比较,我们能更好的理解它们的相似处与不同处熟悉这两种方法很有用,因为它们可以在不同情况下派上用场。
以上是“python如何使用plt.subplot()”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。