温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Apache Hudi数据布局的方法

发布时间:2022-03-31 09:07:03 来源:亿速云 阅读:176 作者:iii 栏目:开发技术

这篇文章主要介绍“Apache Hudi数据布局的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Apache Hudi数据布局的方法”文章能帮助大家解决问题。

    1. 背景

    Apache Hudi将流处理带到大数据,相比传统批处理效率高一个数量级,提供了更新鲜的数据。在数据湖/仓库中,需要在摄取速度和查询性能之间进行权衡,数据摄取通常更喜欢小文件以改善并行性并使数据尽快可用于查询,但很多小文件会导致查询性能下降。在摄取过程中通常会根据时间在同一位置放置数据,但如果把查询频繁的数据放在一起时,查询引擎的性能会更好,大多数系统都倾向于支持独立的优化来提高性能,以解决未优化的数据布局的限制。本博客介绍了一种称为Clustering[RFC-19]的服务,该服务可重新组织数据以提高查询性能,也不会影响摄取速度。

    2. Clustering架构

    Hudi通过其写入客户端API提供了不同的操作,如insert/upsert/bulk_insert来将数据写入Hudi表。为了能够在文件大小和摄取速度之间进行权衡,Hudi提供了一个hoodie.parquet.small.file.limit配置来设置最小文件大小。用户可以将该配置设置为0以强制新数据写入新的文件组,或设置为更高的值以确保新数据被"填充"到现有小的文件组中,直到达到指定大小为止,但其会增加摄取延迟。

    为能够支持快速摄取的同时不影响查询性能,我们引入了Clustering服务来重写数据以优化Hudi数据湖文件的布局。

    Clustering服务可以异步或同步运行,Clustering会添加了一种新的REPLACE操作类型,该操作类型将在Hudi元数据时间轴中标记Clustering操作。

    总体而言Clustering分为两个部分:

    •调度Clustering:使用可插拔的Clustering策略创建Clustering计划。•执行Clustering:使用执行策略处理计划以创建新文件并替换旧文件。

    2.1 调度Clustering

    调度Clustering会有如下步骤

    •识别符合Clustering条件的文件:根据所选的Clustering策略,调度逻辑将识别符合Clustering条件的文件。•根据特定条件对符合Clustering条件的文件进行分组。每个组的数据大小应为targetFileSize的倍数。分组是计划中定义的"策略"的一部分。此外还有一个选项可以限制组大小,以改善并行性并避免混排大量数据。•最后将Clustering计划以avro元数据格式保存到时间线。

    2.2 运行Clustering

    •读取Clustering计划,并获得clusteringGroups,其标记了需要进行Clustering的文件组。•对于每个组使用strategyParams实例化适当的策略类(例如:sortColumns),然后应用该策略重写数据。•创建一个REPLACE提交,并更新HoodieReplaceCommitMetadata中的元数据。

    Clustering服务基于Hudi的MVCC设计,允许继续插入新数据,而Clustering操作在后台运行以重新格式化数据布局,从而确保并发读写者之间的快照隔离。

    注意:现在对表进行Clustering时还不支持更新,将来会支持并发更新。

    Apache Hudi数据布局的方法

    2.3 Clustering配置

    使用Spark可以轻松设置内联Clustering,参考如下示例

    import org.apache.hudi.QuickstartUtils._</code><code>import scala.collection.JavaConversions._</code><code>import org.apache.spark.sql.SaveMode._</code><code>import org.apache.hudi.DataSourceReadOptions._</code><code>import org.apache.hudi.DataSourceWriteOptions._</code><code>import org.apache.hudi.config.HoodieWriteConfig._</code><code>val df =  //generate data frame</code><code>df.write.format("org.apache.hudi").</code><code>        options(getQuickstartWriteConfigs).</code><code>        option(PRECOMBINE_FIELD_OPT_KEY, "ts").</code><code>        option(RECORDKEY_FIELD_OPT_KEY, "uuid").</code><code>        option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").</code><code>        option(TABLE_NAME, "tableName").</code><code>        option("hoodie.parquet.small.file.limit", "0").</code><code>        option("hoodie.clustering.inline", "true").</code><code>        option("hoodie.clustering.inline.max.commits", "4").</code><code>        option("hoodie.clustering.plan.strategy.target.file.max.bytes", "1073741824").</code><code>        option("hoodie.clustering.plan.strategy.small.file.limit", "629145600").</code><code>        option("hoodie.clustering.plan.strategy.sort.columns", "column1,column2"). //optional, if sorting is needed as part of rewriting data</code><code>        mode(Append).</code><code>        save("dfs://location");

    对于设置更高级的异步Clustering管道,参考此处示例。

    3. 表查询性能

    我们使用生产环境表的一个分区创建了一个数据集,该表具有约2000万条记录,约200GB,数据集具有多个session_id的行。用户始终使用会话谓词查询数据,单个会话的数据会分布在多个数据文件中,因为数据摄取会根据到达时间对数据进行分组。下面实验表明通过对会话进行Clustering可以改善数据局部性并将查询执行时间减少50%以上。

    查询SQL如下

    spark.sql("select  *  from table where session_id=123")

    3.1 进行Clustering之前

    查询花费了2.2分钟。请注意查询计划的"扫描parquet"部分中的输出行数包括表中的所有2000W行。

    Apache Hudi数据布局的方法

    3.2 进行Clustering之后

    查询计划与上面类似,但由于改进了数据局部性和谓词下推,Spark可以修剪很多行。进行Clustering后,相同的查询在扫描parquet文件时仅输出11万行(2000万行中的),这将查询时间从2.2分钟减少到不到一分钟。

    Apache Hudi数据布局的方法

    下表总结了使用Spark3运行的实验对查询性能的改进

    Table StateQuery runtimeNum Records ProcessedNum files on diskSize of each file
    Unclustered130,673 ms~20M13642~150 MB
    Clustered55,963 ms~110K294~600 MB

    Clustering后查询运行时间减少了60%,在其他样本数据集上也观察到了类似的结果,请参阅示例查询计划和RFC-19性能评估上的更多详细信息。

    我们希望大型表能够大幅度提高速度,与上面的示例不同,查询运行时间几乎完全由实际I/O而不是查询计划决定。

    关于“Apache Hudi数据布局的方法”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI