温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python OpenCV基本功能怎么用

发布时间:2022-04-02 09:22:19 来源:亿速云 阅读:237 作者:iii 栏目:开发技术

本篇内容主要讲解“Python OpenCV基本功能怎么用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python OpenCV基本功能怎么用”吧!

准备工作

右击新建的项目,选择Python File,新建一个Python文件,然后在开头import cv2导入cv2库。

Python OpenCV基本功能怎么用

转成灰度图像

  • 调用imread()方法获取我们资源文件夹中的图片lena.png

  • cvtColor()方法可以让我们的图片转换成任意颜色,第一个参数是我们要转换的图片,第二个参数是要转成的颜色空间,cv2.COLOR_BGR2GRAY就是由BGR变为GRAY,我们日常生活中都是RGB三通道顺序,而在OpenCV中是BGR顺序。

  • 使用imshow()方法显示图片,窗口名称为Gray Image

  • waitKey(0)这句可以让窗口一直保持,如果去掉这句,窗口会一闪而过

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("Gray Image",imgGray)
cv2.waitKey(0)

我们来看下效果:

Python OpenCV基本功能怎么用

高斯模糊

  • GaussianBlur()是对图片进行高斯模糊(也称为高斯平滑),是去除图像噪声的一种方法。

  • 第一个参数是图像,第二个参数(7,7)是卷积核的大小,只能是奇数长度的矩阵,第三个参数是Sigma X,默认为0

  • imshow()显示原图和灰度图

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.waitKey(0)

我们来看下效果,左为原图,右是高斯模糊:

Python OpenCV基本功能怎么用

边缘检测

边缘检测Canny()方法中第一个参数是图像,第二个参数是阈值1,第三个参数是阈值2,用来显示灰度值在此范围内的边缘线。

img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.waitKey(0)

我们运行看下效果:

Python OpenCV基本功能怎么用

膨胀运算

膨胀运算中,会用到numpy库,我们先导入一下:import numpy as np定义一下大小为5x5的卷积核:kernel=np.ones((5,5),np.uint8),数值类型是无符号整型

kernel=np.ones((5,5),np.uint8)
img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)
imgDialation=cv2.dilate(imgCanny,kernel,iterations=1)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.imshow("Dialation Image",imgDialation)
cv2.waitKey(0)

我们看下效果,膨胀使得边缘线变得更厚,全部连接到一块。

Python OpenCV基本功能怎么用

腐蚀运算

我们对刚刚膨胀的图像进行腐蚀运算,就可以得到闭合的边缘图像。

kernel=np.ones((5,5),np.uint8)
img=cv2.imread("Resources/lena.png")
imgGray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur=cv2.GaussianBlur(imgGray,(7,7),0)
imgCanny=cv2.Canny(img,150,200)
imgDialation=cv2.dilate(imgCanny,kernel,iterations=1)

cv2.imshow("Gray Image",imgGray)
cv2.imshow("Blur Image",imgBlur)
cv2.imshow("Canny Image",imgCanny)
cv2.imshow("Dialation Image",imgDialation)
cv2.waitKey(0)

从左到右依次为膨胀图像、腐蚀图像、边缘检测图像

Python OpenCV基本功能怎么用

到此,相信大家对“Python OpenCV基本功能怎么用”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI