本篇内容介绍了“怎么使用python爬虫爬取数据”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
在程序中两个库的书写是这样的:
import requests from bs4 import BeautifulSoup
由于我使用的是pycharm进行的python编程。所以我就讲讲在pycharm上安装这两个库的方法。在主页面文件选项下,找到设置。进一步找到项目解释器。之后在所选框中,点击软件包上的+号就可以进行查询插件安装了。有过编译器插件安装的hxd估计会比较好入手。具体情况就如下图所示。
我写了一个爬取微博热搜的爬虫程序,这里就直接以它为例吧。获取header和cookie是一个爬虫程序必须的,它直接决定了爬虫程序能不能准确的找到网页位置进行爬取。
首先进入微博热搜的页面,按下F12,就会出现网页的js语言设计部分。如下图所示。找到网页上的Network部分。然后按下ctrl+R刷新页面。如果,进行就有文件信息,就不用刷新了,当然刷新了也没啥问题。然后,我们浏览Name这部分,找到我们想要爬取的文件,鼠标右键,选择copy,复制下网页的URL。就如下图所示。
复制好URL后,我们就进入一个网页Convert curl commands to code。这个网页可以根据你复制的URL,自动生成header和cookie,如下图。生成的header和cookie,直接复制走就行,粘贴到程序中。
#爬虫头数据 cookies = { 'SINAGLOBAL': '6797875236621.702.1603159218040', 'SUB': '_2AkMXbqMSf8NxqwJRmfkTzmnhboh2ygvEieKhMlLJJRMxHRl-yT9jqmg8tRB6PO6N_Rc_2FhPeZF2iThYO9DfkLUGpv4V', 'SUBP': '0033WrSXqPxfM72-Ws9jqgMF55529P9D9Wh-nU-QNDs1Fu27p6nmwwiJ', '_s_tentry': 'www.baidu.com', 'UOR': 'www.hfut.edu.cn,widget.weibo.com,www.baidu.com', 'Apache': '7782025452543.054.1635925669528', 'ULV': '1635925669554:15:1:1:7782025452543.054.1635925669528:1627316870256', } headers = { 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/25', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Sec-Fetch-Site': 'cross-site', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-User': '?1', 'Sec-Fetch-Dest': 'document', 'Accept-Language': 'zh-CN,zh;q=0.9', } params = ( ('cate', 'realtimehot'), )
复制到程序中就像这样。这是微博热搜的请求头。
我们将header和cookie搞到手后,就可以将它复制到我们的程序里。之后,使用request请求,就可以获取到网页了。
#获取网页 response = requests.get('https://s.weibo.com/top/summary', headers=headers, params=params, cookies=cookies)
这个时候,我们需要回到网页。同样按下F12,找到网页的Elements部分。用左上角的小框带箭头的标志,如下图,点击网页内容,这个时候网页就会自动在右边显示出你获取网页部分对应的代码。
如上图所示,我们在找到想要爬取的页面部分的网页代码后,将鼠标放置于代码上,右键,copy到selector部分。就如上图所示。
其实刚才复制的selector就相当于网页上对应部分存放的地址。由于我们需要的是网页上的一类信息,所以我们需要对获取的地址进行分析,提取。当然,就用那个地址也不是不行,就是只能获取到你选择的网页上的那部分内容。
#pl_top_realtimehot > table > tbody > tr:nth-child(1) > td.td-02 > a #pl_top_realtimehot > table > tbody > tr:nth-child(2) > td.td-02 > a #pl_top_realtimehot > table > tbody > tr:nth-child(9) > td.td-02 > a
这是我获取的三条地址,可以发现三个地址有很多相同的地方,唯一不同的地方就是tr部分。由于tr是网页标签,后面的部分就是其补充的部分,也就是子类选择器。可以推断出,该类信息,就是存储在tr的子类中,我们直接对tr进行信息提取,就可以获取到该部分对应的所有信息。所以提炼后的地址为:
#pl_top_realtimehot > table > tbody > tr > td.td-02 > a
这个过程对js类语言有一定了解的hxd估计会更好处理。不过没有js类语言基础也没关系,主要步骤就是,保留相同的部分就行,慢慢的试,总会对的。
这一步完成后,我们就可以直接爬取数据了。用一个标签存储上面提炼出的像地址一样的东西。标签就会拉取到我们想获得的网页内容。
#爬取内容 content="#pl_top_realtimehot > table > tbody > tr > td.td-02 > a"
之后我们就要soup和text过滤掉不必要的信息,比如js类语言,排除这类语言对于信息受众阅读的干扰。这样我们就成功的将信息,爬取下来了。
fo = open("./微博热搜.txt",'a',encoding="utf-8") a=soup.select(content) for i in range(0,len(a)): a[i] = a[i].text fo.write(a[i]+'\n') fo.close()
我是将数据存储到了文件夹中,所以会有wirte带来的写的操作。想把数据保存在哪里,或者想怎么用,就看读者自己了。
import os import requests from bs4 import BeautifulSoup #爬虫头数据 cookies = { 'SINAGLOBAL': '6797875236621.702.1603159218040', 'SUB': '_2AkMXbqMSf8NxqwJRmfkTzmnhboh2ygvEieKhMlLJJRMxHRl-yT9jqmg8tRB6PO6N_Rc_2FhPeZF2iThYO9DfkLUGpv4V', 'SUBP': '0033WrSXqPxfM72-Ws9jqgMF55529P9D9Wh-nU-QNDs1Fu27p6nmwwiJ', '_s_tentry': 'www.baidu.com', 'UOR': 'www.hfut.edu.cn,widget.weibo.com,www.baidu.com', 'Apache': '7782025452543.054.1635925669528', 'ULV': '1635925669554:15:1:1:7782025452543.054.1635925669528:1627316870256', } headers = { 'Connection': 'keep-alive', 'Cache-Control': 'max-age=0', 'Upgrade-Insecure-Requests': '1', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36 SLBrowser/7.0.0.6241 SLBChan/25', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'Sec-Fetch-Site': 'cross-site', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-User': '?1', 'Sec-Fetch-Dest': 'document', 'Accept-Language': 'zh-CN,zh;q=0.9', } params = ( ('cate', 'realtimehot'), ) #数据存储 fo = open("./微博热搜.txt",'a',encoding="utf-8") #获取网页 response = requests.get('https://s.weibo.com/top/summary', headers=headers, params=params, cookies=cookies) #解析网页 response.encoding='utf-8' soup = BeautifulSoup(response.text, 'html.parser') #爬取内容 content="#pl_top_realtimehot > table > tbody > tr > td.td-02 > a" #清洗数据 a=soup.select(content) for i in range(0,len(a)): a[i] = a[i].text fo.write(a[i]+'\n') fo.close()
“怎么使用python爬虫爬取数据”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。