这篇文章主要介绍“python的json模块怎么使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python的json模块怎么使用”文章能帮助大家解决问题。
推荐使用参考网站: json
在python中,json模块可以实现json数据的序列化和反序列化
序列化:将可存放在内存中的python 对象转换成可物理存储和传递的形式
实现方法:load() loads()
反序列化:将可物理存储和传递的json数据形式转换为在内存中表示的python对象
实现方法:dump() dumps()
def dump(obj, fp, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw):
1.把python对象obj转换成物理表现形式fp流。其中fp的.write()可以支持写入类文件中
2.如果skipkeys是true,那么在处理json对象的时候,仅支持 (str, int, float, bool, None) 这些基本类型的key,如果有非基本类型,就会抛出TypeError异常;如果值为false,那么对于非基本类型,则会抛出TypeError;默认值为false
3.如果ensure_ascii是true,那么obj中字符在写入fp的时候,非ascii字符会被进行转义;如果值为false,那么对于这些非ascii字符不会进行转义,会原样写入;默认值为true
4.如果check_circular是false,那么遇到container类型(list,dict,自定义编码类型)的时候,不会循环引用检查,一旦是循环引用,结果就是OverflowError;如果值为true,那么会对container类型进行循环引用检查,检查失败会 raise ValueError(“Circular reference detected”);默认值是true
5.如果allow_nan是false,严格遵守json的规范,对于序列化一些超出float范围的值(nan, inf, -inf)的时候,会抛出ValueError;如果值为true,那么超过float范围的值将会使用在JavaScript中的等效值(NaN, Infinity, -Infinity);默认值为true
6.如果indent是一个non-negative (正)整数,那么json中的数组元素和对象元素都将会使用indent单位缩进格式来进行输出;值为0的时候,就只会插入一个换行符;值为None的时候,会输出最紧凑的格式
7.separators的指定是以元组(item_separator, key_separator)的方式;如果indent=‘None’ 那么该选项的默认值为(', ', ': '),否则该选项的默认值为(',', ': ');如果想要紧凑的json表达,那么应该使用(',', ': ')来去除空格
8.default(obj)是一个函数,主要是针对于那些无法被直接序列化的对象。该参数可以提供一个默认的序列化版本,否则就会抛出一个TypeError。默认是抛出TypeError
9.如果sort_keys是true,那么输出的时候会根据key进行排序,默认值是false可以指定一个JSONEncoder的子类,来序列化其他的类型,可以通过cls或者是JSONEncoder参数来指定
def dumps(obj, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw):
4.把obj序列化成一个json格式的字符串,并返回该字符串支持的python内置可进行json序列化的类型有(str, int, float, bool, None,list,tuple,dict)如果无法序列化的类型,会抛出TypeError
2.其他参数同上解释
def load(fp, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
1.把物理表现形式fp流(fp.read()的返回需要是一个json格式)反序列化成一个python对象
2.object_hook是一个可选的函数,主要用来对直接反序列化之后的结果进行二次加工;object_hook的参数只有一个,是dict,该dict也是反序列化的直接结果;object_hook的返回值为load方法的返回值 ;这个功能一般是用来自定义解码器,例如JSON-RPC
3.object_pairs_hook是一个可选的函数,主要用来对直接反序列化之后的结果进行二次加工;object_pairs_hook的参数只有一个,是list(tuple),该list(tuple)也是反序列化的直接结果;object_pairs_hook的返回值为load方法的返回值 ;这个功能一般是用来自定义解码器,例如JSON-RPC;在同时指定了object_hook和object_pairs_hook的时候,object_pairs_hook的优先级高于object_hook
4.cls的关键字参数,支持使用自定义的JSONDecoder的子类;如果不指定,默认使用JSONDecoder
def loads(s, *, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):
1.反序列化一个s(包含json文本的str,bytes,bytearray的实例对象)到一个python对象
2.object_hook 同上
3.object_pairs_hook同上
4.parse_float 如果定义了,那么会在对json字符串中的每一个float进行解码的时候调用;默认情况下等价于 float(num_str);也可以使用其他的数据类型,如(e.g. decimal.Decimal)
5.parse_int 如果定义了,那么会在对json字符串中的每一个float进行解码的时候调用;默认情况下,等价于 int(num_str);也可使用其他针对于json中的integer的datatype或者是parser
6.parse_constant 如果定义了,那么在碰到-Infinity, Infinity, NaN.这些的时候会被调用;如果遇到无效的json符号,会抛出异常
import json if __name__ == '__main__': # 测试格式化非json格式数据 print('-------------测试格式化非json格式数据----------------') a = json.dumps(2.0) print(a, type(a)) a = json.dumps(tuple()) print(a, type(a)) a = json.dumps([]) print(a, type(a)) # 测试格式化json格式数据 print('-------------测试格式化json格式数据----------------') j = {'a': 1, 'b': 6} a = json.dumps(j) print(a, type(a)) # 测试skipkeys参数 print('-------------测试skipkeys参数----------------') j = {'a': 1, tuple(): 6} a = json.dumps(j, skipkeys=True) print(a, type(a)) # 测试indent参数 print('-------------测试indent默认参数----------------') j = {'a': 1, 'b': 234} a = json.dumps(j) print(a, type(a)) print('-------------测试indent=0参数----------------') a = json.dumps(j, indent=0) print(a, type(a)) print('-------------测试indent=2参数----------------') a = json.dumps(j, indent=2) print(a, type(a)) print('-------------测试separators参数----------------') a = json.dumps(j, separators=('[', ']')) print(a, type(a))
import json if __name__ == '__main__': # 测试格式化非json格式数据 fp = open('./json_dump_data', mode='w') print('-------------测试格式化非json格式数据----------------') a = json.dump(2.0, fp) fp.write('\n') a = json.dump(tuple(), fp) a = json.dump([], fp) fp.write('\n') # 测试格式化json格式数据 j = {'a': 1, 'b': 6} a = json.dump(j, fp)
cat json_dump_data:
1和2中很多参数都是相同的,这里就不再详述3.load()
import json if __name__ == '__main__': j = open('./json_data', mode='r') # 测试默认参数 a = json.load(j) print('-------------测试默认参数----------------') print(a) # 测试object_hook参数 j = open('./json_data', mode='r') a = json.load(j, object_hook=lambda x: x.get('b')) print('-------------测试object_hook参数----------------') print(a) # 测试object_pairs_hook参数 j = open('./json_data', mode='r') loads = json.load(j, object_pairs_hook=lambda x: print(type(x), type(x[2]))) print('-------------测试object_pairs_hook参数----------------') print(loads) # 测试parse_constant参数 j = open('./json_data', mode='r') loads = json.load(j, parse_constant=lambda x: 'not notification') print('-------------测试parse_constant参数----------------') print(loads) # 测试parse_int参数 j = open('./json_data', mode='r') loads = json.load(j, parse_int=lambda x: 'cutomer int') print('-------------测试parse_int参数----------------') print(loads) # 测试parse_float参数 j = open('./json_data', mode='r') loads = json.load(j, parse_float=lambda x: 'cutomer float') print('-------------测试parse_float参数----------------') print(loads)
注:
因为load方法的底层是调用了fp.read(),所以每一次重新调用load的时候都需要重新打开文件句柄。不然就会导致在第二次调用load方法的时候,就会因为fp.read()返回的是none就导致异常
import json if __name__ == '__main__': j = '{"a":1,"b":2.0,"c":Infinity}' # 测试默认参数 a = json.loads(j) print('-------------测试默认参数----------------') print(a) # 测试object_hook参数 a = json.loads(j, object_hook=lambda x: x.get('b')) print('-------------测试object_hook参数----------------') print(a) # 测试object_pairs_hook参数 loads = json.loads(j, object_pairs_hook=lambda x: print(type(x), type(x[2]))) print('-------------测试object_pairs_hook参数----------------') print(loads) # 测试parse_constant参数 loads = json.loads(j, parse_constant=lambda x: 'not notification') print('-------------测试parse_constant参数----------------') print(loads) # 测试parse_int参数 loads = json.loads(j, parse_int=lambda x: 'cutomer int') print('-------------测试parse_int参数----------------') print(loads) # 测试parse_float参数 loads = json.loads(j, parse_float=lambda x: 'cutomer float') print('-------------测试parse_float参数----------------') print(loads)
关于“python的json模块怎么使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。