这篇文章主要讲解了“pyspark自定义UDAF函数调用报错如何解决”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“pyspark自定义UDAF函数调用报错如何解决”吧!
在SparkSQL中,因为需要用到自定义的UDAF函数,所以用pyspark自定义了一个,但是遇到了一个问题,就是自定义的UDAF函数一直报
AttributeError: 'NoneType' object has no attribute '_jvm'
在新建的py文件中,先自定义了一个UDAF函数,然后在 if __name__ == '__main__': 中调用,死活跑不起来,一遍又一遍的对源码,看起来自定义的函数也没错:过程如下:
import decimal import os import pandas as pd from pyspark.sql import SparkSession from pyspark.sql import functions as F os.environ['SPARK_HOME'] = '/export/server/spark' os.environ["PYSPARK_PYTHON"] = "/root/anaconda3/bin/python" os.environ["PYSPARK_DRIVER_PYTHON"] = "/root/anaconda3/bin/python" @F.pandas_udf('decimal(17,12)') def udaf_lx(qx: pd.Series, lx: pd.Series) -> decimal: # 初始值 也一定是decimal类型 tmp_qx = decimal.Decimal(0) tmp_lx = decimal.Decimal(0) for index in range(0, qx.size): if index == 0: tmp_qx = decimal.Decimal(qx[index]) tmp_lx = decimal.Decimal(lx[index]) else: # 计算lx: 计算后,保证数据小数位为12位,与返回类型的设置小数位保持一致 tmp_lx = (tmp_lx * (1 - tmp_qx)).quantize(decimal.Decimal('0.000000000000')) tmp_qx = decimal.Decimal(qx[index]) return tmp_lx if __name__ == '__main__': # 1) 创建 SparkSession 对象,此对象连接 hive spark = SparkSession.builder.master('local[*]') \ .appName('insurance_main') \ .config('spark.sql.shuffle.partitions', 4) \ .config('spark.sql.warehouse.dir', 'hdfs://node1:8020/user/hive/warehouse') \ .config('hive.metastore.uris', 'thrift://node1:9083') \ .enableHiveSupport() \ .getOrCreate() # 注册UDAF 支持在SQL中使用 spark.udf.register('udaf_lx', udaf_lx) # 2) 编写SQL 执行 excuteSQLFile(spark, '_04_insurance_dw_prem_std.sql')
然后跑起来就报了以下错误:
Traceback (most recent call last): File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 835, in _parse_datatype_string return from_ddl_datatype(s) File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 827, in from_ddl_datatype sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json()) AttributeError: 'NoneType' object has no attribute '_jvm' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 839, in _parse_datatype_string return from_ddl_datatype("struct<%s>" % s.strip()) File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 827, in from_ddl_datatype sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json()) AttributeError: 'NoneType' object has no attribute '_jvm' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 841, in _parse_datatype_string raise e File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 831, in _parse_datatype_string return from_ddl_schema(s) File "/root/anaconda3/lib/python3.8/site-packages/pyspark/sql/types.py", line 823, in from_ddl_schema sc._jvm.org.apache.spark.sql.types.StructType.fromDDL(type_str).json()) AttributeError: 'NoneType' object has no attribute '_jvm'
我左思右想,百思不得骑姐,嗐,跑去看 types.py里面的type类型,以为我的 udaf_lx 函数的装饰器里面的 ‘decimal(17,12)’ 类型错了,但是一看,好家伙,types.py 里面的774行
_FIXED_DECIMAL = re.compile(r"decimal\(\s*(\d+)\s*,\s*(-?\d+)\s*\)")
这是能匹配上的,没道理啊!
然后再往回看报错的信息的最后一行:
AttributeError: 'NoneType' object has no attribute '_jvm'
竟然是空对象没有_jvm这个属性!
一拍脑瓜子,得了,pyspark的SQL 在执行的时候,需要用到 JVM ,而运行pyspark的时候,需要先要为spark提供环境,也就说,内存中要有SparkSession对象,而python在执行的时候,是从上往下,将方法加载到内存中,在加载自定义的UDAF函数时,由于有装饰器@F.pandas_udf的存在 , F 则是pyspark.sql.functions, 此时加载自定义的UDAF到内存中,需要有SparkSession的环境提供JVM,而此时的内存中尚未有SparkSession环境!因此,将自定义的UDAF 函数挪到 if __name__ == '__main__': 创建完SparkSession的后面,如下:
import decimal import os import pandas as pd from pyspark.sql import SparkSession from pyspark.sql import functions as F os.environ['SPARK_HOME'] = '/export/server/spark' os.environ["PYSPARK_PYTHON"] = "/root/anaconda3/bin/python" os.environ["PYSPARK_DRIVER_PYTHON"] = "/root/anaconda3/bin/python" if __name__ == '__main__': # 1) 创建 SparkSession 对象,此对象连接 hive spark = SparkSession.builder.master('local[*]') \ .appName('insurance_main') \ .config('spark.sql.shuffle.partitions', 4) \ .config('spark.sql.warehouse.dir', 'hdfs://node1:8020/user/hive/warehouse') \ .config('hive.metastore.uris', 'thrift://node1:9083') \ .enableHiveSupport() \ .getOrCreate() @F.pandas_udf('decimal(17,12)') def udaf_lx(qx: pd.Series, lx: pd.Series) -> decimal: # 初始值 也一定是decimal类型 tmp_qx = decimal.Decimal(0) tmp_lx = decimal.Decimal(0) for index in range(0, qx.size): if index == 0: tmp_qx = decimal.Decimal(qx[index]) tmp_lx = decimal.Decimal(lx[index]) else: # 计算lx: 计算后,保证数据小数位为12位,与返回类型的设置小数位保持一致 tmp_lx = (tmp_lx * (1 - tmp_qx)).quantize(decimal.Decimal('0.000000000000')) tmp_qx = decimal.Decimal(qx[index]) return tmp_lx # 注册UDAF 支持在SQL中使用 spark.udf.register('udaf_lx', udaf_lx) # 2) 编写SQL 执行 excuteSQLFile(spark, '_04_insurance_dw_prem_std.sql')
运行结果如图:
感谢各位的阅读,以上就是“pyspark自定义UDAF函数调用报错如何解决”的内容了,经过本文的学习后,相信大家对pyspark自定义UDAF函数调用报错如何解决这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。