这篇“python全对偶组合与全覆盖组合比较实例分析”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python全对偶组合与全覆盖组合比较实例分析”文章吧。
import itertools
import metacomm.combinatorics.all_pairs2 as all_pairs
all_pairs 这个库适用于python2.7 安装好 里面有语法需要更新才能在python3中用
test = """{ "a": [{"a": "string"}], "b": ["string"], "c": "string", "d": "bool", "e": "int", "f": {"ff": "string", "gg": "int"} }"""
同样 设定 范围值,每一种参数有几个取值范围,进行覆盖测试
1对偶算法覆盖
2全覆盖(笛卡尔积算法)
def get_data_list(_type, request_type=0): """ 0表示对偶算法;1表示全匹配组合 返回参数的取值范围 """ if _type == 'string': return ["", None, "abc123"] elif _type == 'time': return ["1900-01-01", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())] elif _type == 'int': return [-1, 0, 1] elif _type == 'decimal': return [-0.50, 0.0, 0.50] elif _type == 'bool': return [True, False] elif isinstance(_type, dict): if request_type == 0: return dual_test_case(_type) elif request_type == 1: return itertools_case_list(_type) elif isinstance(_type, list): new_list = [] c_list = [] if isinstance(_type[0], dict): # 字典集合,递归取得自己的取值范围 if request_type == 0: c_list = dual_test_case(_type[0]) # 对偶算法 elif request_type == 1: c_list = itertools_case_list(_type[0]) # 全匹配算法 for case in c_list: new_list.append([case]) else: # 数组集合 v_list = get_data_list(_type[0]) for case in v_list: new_list.append([case]) new_list.append(v_list) # 补全一下多个值的数组 return new_list def all_assemble(dic): """返回每个参数的取值范围组成的二维数据,用于求笛卡尔积""" return_list = [] for k, v in dic.items(): k_list = [] for _value in get_data_list(v, 1): di = {} di[k] = _value k_list.append(di) return_list.append(k_list) return return_list def itertools_case_list(dic): """笛卡尔积""" _list = all_assemble(dic) case_list = [] for item in itertools.product(*_list): d3 = {} for di in item: d3.update(di) case_list.append(d3) return case_list def dual_test_case(_base): """对偶生成测试用例""" if not isinstance(_base, dict): return [] key_list = list() value_list = list() case_list = list() for k, v in _base.items(): key_list.append(k) value_list.append(get_data_list(v)) # print(key_list, value_list) if value_list.__len__() >= 2: res = all_pairs.all_pairs2(value_list) for i, b in enumerate(res): # print i, b dic = dict() for n in range(b.__len__()): dic[key_list[n]] = b[n] case_list.append(dic) else: for v in value_list[0]: dic = dict() dic[key_list[0]] = v case_list.append(dic) return case_list
case_list1 = dual_test_case(json.loads(test)) print(case_list1.__len__()) for case in case_list1: print(str(json.dumps(case))) case_list2 = itertools_case_list(json.loads(test)) print(case_list2.__len__()) for case in case_list2: print(str(json.dumps(case)))
对偶算法生成用例39条
全覆盖生成用例1944条
以上就是关于“python全对偶组合与全覆盖组合比较实例分析”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。