本篇内容主要讲解“怎么使用Python的pyecharts绘制折线图”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么使用Python的pyecharts绘制折线图”吧!
折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了。折线图是通过直线将这些点按照某种顺序连接起来形成的图,适用于数据在一个有序的因变量上的变化,它的特点是反应事物随类别而变化的趋势,可以清晰展现数据的增减趋势、增减的速率、增减的规律、峰值等特征。
优点:
能很好的展现沿某个维度的变化趋势
能比较多组数据在同一个维度上的趋势
适合展现较大数据集
缺点:每张图上不适合展示太多折线
双折线图在一张图里面显示,肯定有一个相同的维度,然后有两个不同的数据集。比如一天的温度有最高的和最低的温度,我们就可以用这个来作为展示了。
import pyecharts.options as opts from pyecharts.charts import Line week_name_list = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"] high_temperature = [11, 11, 15, 13, 12, 13, 10] low_temperature = [1, -2, 2, 5, 3, 2, 0] ( Line(init_opts=opts.InitOpts(width="1000px", height="600px")) .add_xaxis(xaxis_data=week_name_list) .add_yaxis( series_name="最高气温", y_axis=high_temperature, # 显示最大值和最小值 # markpoint_opts=opts.MarkPointOpts( # data=[ # opts.MarkPointItem(type_="max", name="最大值"), # opts.MarkPointItem(type_="min", name="最小值"), # ] # ), # 显示平均值 # markline_opts=opts.MarkLineOpts( # data=[opts.MarkLineItem(type_="average", name="平均值")] # ), ) .add_yaxis( series_name="最低气温", y_axis=low_temperature, # 设置刻度标签 # markpoint_opts=opts.MarkPointOpts( # data=[opts.MarkPointItem(value=-2, name="周最低", x=1, y=-1.5)] # ), # markline_opts=opts.MarkLineOpts( # data=[ # opts.MarkLineItem(type_="average", name="平均值"), # opts.MarkLineItem(symbol="none", x="90%", y="max"), # opts.MarkLineItem(symbol="circle", type_="max", name="最高点"), # ] # ), ) .set_global_opts( title_opts=opts.TitleOpts(title="未来一周气温变化", subtitle="副标题"), # tooltip_opts=opts.TooltipOpts(trigger="axis"), # toolbox_opts=opts.ToolboxOpts(is_show=True), xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False), ) .render("最低最高温度折线图.html") ) print("图表已生成!请查收!")
还记得二重积分吗,面积代表什么?有时候我们就想要看谁围出来的面积大,这个在物理的实际运用中比较常见,下面来看看效果吧。
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker from pyecharts.globals import ThemeType c = ( Line({"theme": ThemeType.MACARONS}) .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), is_smooth=True) .add_yaxis("商家B", Faker.values(), is_smooth=True) .set_series_opts( areastyle_opts=opts.AreaStyleOpts(opacity=0.5), label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts( title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts( axistick_opts=opts.AxisTickOpts(is_align_with_label=True), is_scale=False, boundary_gap=False, name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), # toolbox_opts=opts.ToolboxOpts() # 工具选项 ) .render("面积折线图-紧贴Y轴.html") ) print("请查收!")
此模板和Excel里面的可视化差不多,没有一点功能元素,虽然它是最简洁的,但是我们可以通过这个进行改动,在上面创作的画作。
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.globals import ThemeType x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] y_data = [820, 932, 901, 934, 1290, 1330, 1320] ( Line({"theme": ThemeType.MACARONS}) .set_global_opts( tooltip_opts=opts.TooltipOpts(is_show=False), xaxis_opts=opts.AxisOpts( name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( type_="value", axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), ) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="", y_axis=y_data, symbol="emptyCircle", is_symbol_show=True, label_opts=opts.LabelOpts(is_show=False), ) .render("简单折线图.html") )
有时候我们在处理数据的时候,发现有些类别的数据缺失了,这个时候我们想要它可以自动连接起来,那么这个模板就可以用到了。
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker from pyecharts.globals import ThemeType y = Faker.values() y[3], y[5] = None, None c = ( Line({"theme": ThemeType.WONDERLAND}) .add_xaxis(Faker.choose()) .add_yaxis("商家A", y, is_connect_nones=True) .set_global_opts(title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts( name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), ) # toolbox_opts=opts.ToolboxOpts() # 工具选项) .render("数据缺失折线图.html") )
此图例未必用的上,当然也可以作为一个模板分享于此。
import pyecharts.options as opts from pyecharts.charts import Line x_data = ["一", "二", "三", "四", "五", "六", "七", "八", "九"] y_data_3 = [1, 3, 9, 27, 81, 247, 741, 2223, 6669] y_data_2 = [1, 2, 4, 8, 16, 32, 64, 128, 256] y_data_05 = [1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64, 1 / 128, 1 / 256, 1 / 512] ( Line(init_opts=opts.InitOpts(width="1200px", height="600px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="1/2的指数", y_axis=y_data_05, linestyle_opts=opts.LineStyleOpts(width=2), ) .add_yaxis( series_name="2的指数", y_axis=y_data_2, linestyle_opts=opts.LineStyleOpts(width=2) ) .add_yaxis( series_name="3的指数", y_axis=y_data_3, linestyle_opts=opts.LineStyleOpts(width=2) ) .set_global_opts( title_opts=opts.TitleOpts(title="对数轴示例", pos_left="center"), tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}"), legend_opts=opts.LegendOpts(pos_left="left"), xaxis_opts=opts.AxisOpts(type_="category", name="x"), yaxis_opts=opts.AxisOpts( type_="log", name="y", splitline_opts=opts.SplitLineOpts(is_show=True), is_scale=True, ), ) .render("对数轴折线图.html") )
多个折线图展示要注意的是,数据量不能过于的接近,不然密密麻麻的折线,反而让人看起来不舒服。
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.globals import ThemeType x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"] y_data = [820, 932, 901, 934, 1290, 1330, 1320] ( Line({"theme": ThemeType.MACARONS}) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="邮件营销", stack="总量", y_axis=[120, 132, 101, 134, 90, 230, 210], label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="联盟广告", stack="总量", y_axis=[220, 182, 191, 234, 290, 330, 310], label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="视频广告", stack="总量", y_axis=[150, 232, 201, 154, 190, 330, 410], label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="直接访问", stack="总量", y_axis=[320, 332, 301, 334, 390, 330, 320], label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="搜索引擎", stack="总量", y_axis=[820, 932, 901, 934, 1290, 1330, 1320], label_opts=opts.LabelOpts(is_show=False), ) .set_global_opts( title_opts=opts.TitleOpts(title="折线图堆叠"), tooltip_opts=opts.TooltipOpts(trigger="axis"), yaxis_opts=opts.AxisOpts( type_="value", axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), name='数量', name_location='middle', name_gap=40, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False, name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), ) .render("折线图堆叠.html") )
有时候需要在一个图里面进行对比,那么我们应该如何呈现一个丝滑般的曲线折线图呢?看看这个
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker c = ( Line() .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), is_smooth=True) # 如果不想变成曲线就删除即可 .add_yaxis("商家B", Faker.values(), is_smooth=True) .set_global_opts(title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts( name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), # toolbox_opts=opts.ToolboxOpts() # 工具选项 ) .render("二维折线图.html") )
次模板的最大的好处就是可以移动鼠标智能显示数据
import pyecharts.options as opts from pyecharts.charts import Line # 将在 v1.1.0 中更改 from pyecharts.commons.utils import JsCode js_formatter = """function (params) { console.log(params); return '降水量 ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : ''); }""" ( Line(init_opts=opts.InitOpts(width="1200px", height="600px")) .add_xaxis( xaxis_data=[ "2016-1", "2016-2", "2016-3", "2016-4", "2016-5", "2016-6", "2016-7", "2016-8", "2016-9", "2016-10", "2016-11", "2016-12", ] ) .extend_axis( xaxis_data=[ "2015-1", "2015-2", "2015-3", "2015-4", "2015-5", "2015-6", "2015-7", "2015-8", "2015-9", "2015-10", "2015-11", "2015-12", ], xaxis=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), ) .add_yaxis( series_name="2015 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, # xaxis_index=1, color="#d14a61", y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .add_yaxis( series_name="2016 降水量", is_smooth=True, symbol="emptyCircle", is_symbol_show=False, color="#6e9ef1", y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7], label_opts=opts.LabelOpts(is_show=False), linestyle_opts=opts.LineStyleOpts(width=2), ) .set_global_opts( legend_opts=opts.LegendOpts(), tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"), xaxis_opts=opts.AxisOpts( type_="category", axistick_opts=opts.AxisTickOpts(is_align_with_label=True), axisline_opts=opts.AxisLineOpts( is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61") ), axispointer_opts=opts.AxisPointerOpts( is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter)) ), ), yaxis_opts=opts.AxisOpts( type_="value", splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1) ), ), ) .render("多维颜色多维折线图.html") )
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.faker import Faker from pyecharts.globals import ThemeType c = ( Line({"theme": ThemeType.MACARONS}) .add_xaxis(Faker.choose()) .add_yaxis("商家A", Faker.values(), is_step=True) .set_global_opts(title_opts=opts.TitleOpts(title="标题"), xaxis_opts=opts.AxisOpts( name='类别', name_location='middle', name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20 name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # 标签字体大小 )), yaxis_opts=opts.AxisOpts( name='数量', name_location='middle', name_gap=30, name_textstyle_opts=opts.TextStyleOpts( font_family='Times New Roman', font_size=16 # font_weight='bolder', )), # toolbox_opts=opts.ToolboxOpts() # 工具选项 ) .render("阶梯折线图.html") )
里面的渲染效果相当好看,可以适用于炫酷的展示,数据集可以展示也可以不展示,在相应的位置更改参数即可。
import pyecharts.options as opts from pyecharts.charts import Line from pyecharts.commons.utils import JsCode x_data = ["14", "15", "16", "17", "18", "19", "20", "21", "22", "23","24","25","26","27","28","29","30","31","32","33","34","35","36","37","38","39","40"] y_data = [393, 438, 485, 631, 689, 824, 987, 1000, 1100, 1200,1500,1000,1700,1900,2000,500,1200,1300,1500,1800,1500,1900,1700,1000,1900,1800,2100,1600,2200,2300] background_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)" ) area_color_js = ( "new echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)" ) c = ( Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js))) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="注册总量", y_axis=y_data, is_smooth=True, is_symbol_show=True, symbol="circle", symbol_size=6, linestyle_opts=opts.LineStyleOpts(color="#fff"), label_opts=opts.LabelOpts(is_show=True, position="top", color="white"), itemstyle_opts=opts.ItemStyleOpts( color="red", border_color="#fff", border_width=3 ), tooltip_opts=opts.TooltipOpts(is_show=False), areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1), ) .set_global_opts( title_opts=opts.TitleOpts( title="OCTOBER 2015", pos_bottom="5%", pos_left="center", title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16), ), xaxis_opts=opts.AxisOpts( type_="category", boundary_gap=False, axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"), axisline_opts=opts.AxisLineOpts(is_show=False), axistick_opts=opts.AxisTickOpts( is_show=True, length=25, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"), ), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f") ), ), yaxis_opts=opts.AxisOpts( type_="value", position="right", axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"), axisline_opts=opts.AxisLineOpts( linestyle_opts=opts.LineStyleOpts(width=2, color="#fff") ), axistick_opts=opts.AxisTickOpts( is_show=True, length=15, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"), ), splitline_opts=opts.SplitLineOpts( is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f") ), ), legend_opts=opts.LegendOpts(is_show=False), ) .render("高渲染.html") )
到此,相信大家对“怎么使用Python的pyecharts绘制折线图”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。