温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python中np.linalg.norm()怎么使用

发布时间:2022-07-26 10:01:00 来源:亿速云 阅读:372 作者:iii 栏目:开发技术

这篇文章主要介绍“Python中np.linalg.norm()怎么使用”,在日常操作中,相信很多人在Python中np.linalg.norm()怎么使用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python中np.linalg.norm()怎么使用”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

前言

np.linalg.norm()用于求范数,linalg本意为linear(线性) + algebra(代数),norm则表示范数。

用法

np.linalg.norm(x, ord=None, axis=None, keepdims=False)

1.x: 表示矩阵(一维数据也是可以的~)

2.ord: 表示范数类型

向量的范数

Python中np.linalg.norm()怎么使用

矩阵的向量

  • ord=1:表示求列和的最大值

  • ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根

  • ord=∞:表示求行和的最大值

  • ord=None:表示求整体的矩阵元素平方和,再开根号

3.axis:

参数含义
0表示按列向量来进行处理,求多个列向量的范数
1表示按行向量来进行处理,求多个行向量的范数
None表示整个矩阵的范数

4.keepdims:表示是否保持矩阵的二位特性,True表示保持,False表示不保持,默认为False

例子

1.默认状态下

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X))

Result:

Python中np.linalg.norm()怎么使用

Python中np.linalg.norm()怎么使用

2.改变axis

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

Python中np.linalg.norm()怎么使用

3.改变ord

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=1))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, ord=2))

Python中np.linalg.norm()怎么使用

4.改变keepdims

import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0, keepdims=True))
import numpy as np
X = [[1, 2, 3], [4, 5, 6]]
print(np.linalg.norm(X, axis=0))

Python中np.linalg.norm()怎么使用

注意:严格来说,当 ord <= 0 时,不符合数学上的范数公式,但它仍然适用于各种数值目的。

import numpy as np
a = np.arange(12)
print(a)
b = a.reshape((3, 4))
print(b)
print(np.linalg.norm(a))
print(np.linalg.norm(b))
print(np.linalg.norm(b, 'fro'))
print(np.linalg.norm(b, 'nuc'))

print(np.linalg.norm(a, np.inf))
print(np.linalg.norm(a, -np.inf))
print(np.linalg.norm(a, 1))

print(np.linalg.norm(b, np.inf, axis=1))
print(np.linalg.norm(b, -np.inf, axis=0))
print(np.linalg.norm(b, 1))

[ 0  1  2  3  4  5  6  7  8  9 10 11]
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
22.4944437584
22.4944437584
22.4944437584
24.3646384993
11.0
0.0
66.0
[  3.   7.  11.]
[ 0.  1.  2.  3.]
21.0

到此,关于“Python中np.linalg.norm()怎么使用”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI