这篇文章主要讲解了“java ThreadPoolExecutor线程池拒绝策略实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“java ThreadPoolExecutor线程池拒绝策略实例分析”吧!
线程池使用DiscardOldestPolicy拒绝策略,阻塞队列使用ArrayBlockingQueue,发现在某些情形下对于得到的Future,调用get()方法当前线程会一直阻塞。
为了便于理解,将实际情景抽象为下面的代码:
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor( 1, 1, 1, TimeUnit.SECONDS, new ArrayBlockingQueue<>(1), Executors.defaultThreadFactory(), new ThreadPoolExecutor.DiscardOldestPolicy());//新建线程池时核心线程数及最大线程数都设置为1,阻塞队列使用ArrayBlockingQueue,拒绝策略为DiscardOldestPolicy public void doBusiness(){ Task task1 = new Task(); Task task2 = new Task(); Task task3 = new Task(); Future<Boolean> future1 = threadPoolExecutor.submit(task1);//当前工作线程为0,会新建一个worker作为工作线程,并执行task1 Future<Boolean> future2 = threadPoolExecutor.submit(task2);//当前核心线程数已满,会将任务放入阻塞队列 Future<Boolean> future3 = threadPoolExecutor.submit(task3); /*当前核心线程已满并且阻塞队列已满,execute()时会调用ThreadPoolExecutord的addWorker(command,false),由 于目前task1还没执行完,则工作线程数量为1,已经达到了最大线程数,则addWorker(command,false)返回false, 触发对应的拒绝策略,会从阻塞队列中移除task2对应的任务(阻塞队列中并不是直接放的task2,而是以task2为入 参构造的一个FutureTask,参见AbstarctExecutorService的submit(Callable<T> task)方法*/ try{ boolean result = future2.get(); System.out.println(result); } catch (ExecutionException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } @Test public void test_doBusiness(){ doBusiness();//入口 } private class Task implements Callable<Boolean>{ @Override public Boolean call() throws Exception { try { Thread.sleep(1000);//模拟业务执行 return true; }catch(Exception e){ e.printStackTrace(); } return true; } }
通过上面代码我们明白了阻塞队列会将task2对应的任务移除,那么为何移除之后调用get()方法线程会一直阻塞呢?
其实Future future2= threadPoolExecutor.submit(task2)实际会调用AbstractExecutorService的submit(Callable task)方法,并且最终返回的future2实际是一个FutureTask类型。
public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; }
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }
因此,我们直接看FutureTask的get()方法
public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); }
由于future2已经从阻塞队列中移除,并且从始至终都没有工作线程执行它,即FutureTask的状态一直都为NEW状态,其会进入awaitDone(false,0L)中,接下列我们追踪该方法。
private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null)//第一次进for循环时q==null,进入到该分支 q = new WaitNode(); else if (!queued)//第二次进for循环时queue为false,则使用CAS将q置为waiters的头结点 queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else//将q置为头结点后,最终会进入这里调用park()方法,阻塞当前线程 LockSupport.park(this); }
从上面的代码可以看出调用future2.get()后会一直阻塞在park()方法处,这便是本次问题出现的原因,
本次问题出现主要是同时满足了以下几点:
1)使用了有界的阻塞队列ArrayBlockingQueue
2)工作线程达到了线程池配置的最大线程数
3)拒绝策略使用了DiscardOldestPolicy(使用DiscardPolicy也会出现这个问题)
我们日常使用线程池提交任务后,如果在任务执行完成之前调用future的get()方法,当前线程会进入阻塞状态,当任务执行完成后,才会将当前线程唤醒,如何从代码上分析该流程?
首先当任务提交到线程池,如果任务当前在阻塞队列中,则FutureTask的状态依然像上面的情况一样,是处于New状态,调用get()方法依然会到达LockSupport.park(this)处,将当前线程阻塞。什么时候才会将当前线程唤醒了?
那就是当存在工作线程Worker目前分配的任务执行完成后,其会去调用Worker类的getTask()方法从阻塞队列中拿到该任务,并执行该任务的run()方法,下面是FutureTask的run()方法
public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result);//如果任务执行成功,则调用set(V result)方法 } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } }
其会在执行成功后,调用set(V result)方法
protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion();// } }
然后将FutureTask状态置为NORMAL(FutureTask的状态要和ThreadPoolExecutor的状态区分开),接着调用finishCompletion()方法
private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread;//q在await()方法中设置的,其值为调用get()方法的线程 if (t != null) { q.thread = null; LockSupport.unpark(t);//唤醒该线程 } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done();//熟悉的钩子方法 callable = null; // to reduce footprint }
在finishCompletion中唤起因get()而阻塞的线程。
感谢各位的阅读,以上就是“java ThreadPoolExecutor线程池拒绝策略实例分析”的内容了,经过本文的学习后,相信大家对java ThreadPoolExecutor线程池拒绝策略实例分析这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。