这篇文章主要介绍“OpenCV黑帽运算如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“OpenCV黑帽运算如何使用”文章能帮助大家解决问题。
形态学是图像处理中常见的名词,图像处理的形态学基本属于数学形态学的范畴,是一门建立在格论和拓扑学基础上的图像分析学科。黑帽运算是结合了腐蚀和膨胀的一种运算,闭运算结果图减原图。
简单来说,黑帽运算就是将闭运算后的图像减去原图,突出了比原图轮廓周围区域更暗的区域。效果图见下方图1图2。
void morphologyEx( InputArray src, OutputArray dst, int op, InputArray kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, const Scalar& borderValue = morphologyDefaultBorderValue() ); 其中op=MORPH_BLACKHAT
参数说明
InputArray类型的src,输入图像,如Mat类型。
OutputArray类型的dst,输出图像。
int类型的op,选择不同的运算操作,黑帽运算则是MORPH_BLACKHAT。
Point类型的anchor,锚点。默认值(-1,-1),表示位于单位中心,一般不用。
int类型的iterations,迭代使用的次数,默认值为1。
int类型的borderType,推断图像外部像素的边界模式,我OpenCV版本的默认值为BORDER_CONSTANT。如果图像边界需要扩展,则不同的模式下所扩展的像素,其生成原则不同。
const Scalar&类型的borderValue,当边界为常数时的边界值,默认值为morphologyDefaultBorderValue()。
#include<iostream> #include<opencv2/opencv.hpp> #include<ctime> using namespace std; using namespace cv; int main(void) { cv::Mat test = cv::Mat::zeros(64, 64, CV_8UC1); cv::rectangle(test, cv::Rect(30, 30, 8, 8), 255, -1); cv::rectangle(test, cv::Rect(33, 30, 2, 2), 0, -1); cv::Mat element = getStructuringElement(MORPH_RECT, Size(3, 3)); cv::Mat result, close; cv::morphologyEx(test, close, MORPH_CLOSE, element); cv::morphologyEx(test, result, MORPH_BLACKHAT, element); imshow("original", test); imshow("close", close); imshow("result", result); waitKey(0); system("pause"); return 0; }
测试效果
如上图所示,有原先8*8的矩形,有一个2*2的凹处,我设置了3*3的矩形蒙版,对其进行闭运算操作如图2所示,凹进消失,对其进行黑帽操作如图3所示,突出了凹进的内容。
关于“OpenCV黑帽运算如何使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。