温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么使用Java编写一个简单的风控组件

发布时间:2023-01-03 10:01:48 来源:亿速云 阅读:112 作者:iii 栏目:开发技术

这篇文章主要讲解了“怎么使用Java编写一个简单的风控组件”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Java编写一个简单的风控组件”吧!

一、背景

1.为什么要做风控

这不得拜产品大佬所赐

目前我们业务有使用到非常多的AI能力,如ocr识别、语音测评等,这些能力往往都比较费钱或者费资源,所以在产品层面也希望我们对用户的能力使用次数做一定的限制,因此风控是必须的!

2.为什么要自己写风控

那么多开源的风控组件,为什么还要写呢?是不是想重复发明轮子呀.

怎么使用Java编写一个简单的风控组件

要想回答这个问题,需要先解释下我们业务需要用到的风控(简称业务风控),与开源常见的风控(简称普通风控)有何区别:

风控类型目的对象规则
业务风控实现产品定义的一些限制,达到限制时,有具体的业务流程,如充值vip等比较复杂多变的,例如针对用户进行风控,也能针对用户+年级进行风控自然日、自然小时等
普通风控保护服务或数据,拦截异常请求等接口、部分可以加上简单参数一般用得更多的是滑动窗口

因此,直接使用开源的普通风控,一般情况下是无法满足需求的

3.其它要求

支持实时调整限制

很多限制值在首次设置的时候,基本上都是拍定的一个值,后续需要调整的可能性是比较大的,因此可调整并实时生效是必须的

二、思路

要实现一个简单的业务风控组件,要做什么工作呢?

1.风控规则的实现

a.需要实现的规则

  • 自然日计数

  • 自然小时计数

  • 自然日+自然小时计数

自然日+自然小时计数 这里并不能单纯地串联两个判断,因为如果自然日的判定通过,而自然小时的判定不通过的时候,需要回退,自然日跟自然小时都不能计入本次调用!

b.计数方式的选择

目前能想到的会有:

mysql+db事务

  • 持久化、记录可溯源、实现起来比较麻烦,稍微“”了一点

  • redis+lua

  • 实现简单,redis的可执行lua脚本的特性也能满足对“事务”的要求

  • mysql/redis+分布式事务

  • 需要上锁,实现复杂,能做到比较精确的计数,也就是真正等到代码块执行成功之后,再去操作计数

目前没有很精确技术的要求,代价太大,也没有持久化的需求,因此选用 redis+lua 即可

2.调用方式的实现

a.常见的做法

先定义一个通用的入口

//简化版代码

@Component
class DetectManager {
    fun matchExceptionally(eventId: String, content: String){
        //调用规则匹配
        val rt = ruleService.match(eventId,content)
        if (!rt) {
            throw BaseException(ErrorCode.OPERATION_TOO_FREQUENT)
        }
    }
}

在service中调用该方法

//简化版代码

@Service
class OcrServiceImpl : OcrService {

    @Autowired
    private lateinit var detectManager: DetectManager
    
    /**
     * 提交ocr任务
     * 需要根据用户id来做次数限制
     */
    override fun submitOcrTask(userId: String, imageUrl: String): String {
       detectManager.matchExceptionally("ocr", userId)
       //do ocr
    }
    
}

有没有更优雅一点的方法呢? 用注解可能会更好一点(也比较有争议其实,这边先支持实现)

由于传入的 content 是跟业务关联的,所以需要通过Spel来将参数构成对应的content

三、具体实现

1.风控计数规则实现

a.自然日/自然小时

自然日/自然小时可以共用一套lua脚本,因为它们只有key不同,脚本如下:

//lua脚本
local currentValue = redis.call('get', KEYS[1]);
if currentValue ~= false then 
    if tonumber(currentValue) < tonumber(ARGV[1]) then 
        return redis.call('INCR', KEYS[1]);
    else
        return tonumber(currentValue) + 1;
    end;
else
   redis.call('set', KEYS[1], 1, 'px', ARGV[2]);
   return 1;
end;

其中 KEYS[1] 是日/小时关联的key,ARGV[1]是上限值,ARGV[2]是过期时间,返回值则是当前计数值+1后的结果,(如果已经达到上限,则实际上不会计数)

b.自然日+自然小时

如前文提到的,两个的结合实际上并不是单纯的拼凑,需要处理回退逻辑

//lua脚本
local dayValue = 0;
local hourValue = 0;
local dayPass = true;
local hourPass = true;
local dayCurrentValue = redis.call('get', KEYS[1]);
if dayCurrentValue ~= false then 
    if tonumber(dayCurrentValue) < tonumber(ARGV[1]) then 
        dayValue = redis.call('INCR', KEYS[1]);
    else
        dayPass = false;
        dayValue = tonumber(dayCurrentValue) + 1;
    end;
else
   redis.call('set', KEYS[1], 1, 'px', ARGV[3]);
   dayValue = 1;
end;

local hourCurrentValue = redis.call('get', KEYS[2]);
if hourCurrentValue ~= false then 
    if tonumber(hourCurrentValue) < tonumber(ARGV[2]) then 
        hourValue = redis.call('INCR', KEYS[2]);
    else
        hourPass = false;
        hourValue = tonumber(hourCurrentValue) + 1;
    end;
else
   redis.call('set', KEYS[2], 1, 'px', ARGV[4]);
   hourValue = 1;
end;

if (not dayPass) and hourPass then
    hourValue = redis.call('DECR', KEYS[2]);
end;

if dayPass and (not hourPass) then
    dayValue = redis.call('DECR', KEYS[1]);
end;

local pair = {};
pair[1] = dayValue;
pair[2] = hourValue;
return pair;

其中 KEYS[1] 是天关联生成的key, KEYS[2] 是小时关联生成的key,ARGV[1]是天的上限值,ARGV[2]是小时的上限值,ARGV[3]是天的过期时间,ARGV[4]是小时的过期时间,返回值同上

这里给的是比较粗糙的写法,主要需要表达的就是,进行两个条件判断时,有其中一个不满足,另一个都需要进行回退.

2.注解的实现

a.定义一个@Detect注解

@Retention(AnnotationRetention.RUNTIME)
@Target(AnnotationTarget.FUNCTION, AnnotationTarget.CLASS)
annotation class Detect(

    /**
     * 事件id
     */
    val eventId: String = "",

    /**
     * content的表达式
     */
    val contentSpel: String = ""

)

其中content是需要经过表达式解析出来的,所以接受的是个String

b.定义@Detect注解的处理类

@Aspect
@Component
class DetectHandler {

    private val logger = LoggerFactory.getLogger(javaClass)

    @Autowired
    private lateinit var detectManager: DetectManager

    @Resource(name = "detectSpelExpressionParser")
    private lateinit var spelExpressionParser: SpelExpressionParser

    @Bean(name = ["detectSpelExpressionParser"])
    fun detectSpelExpressionParser(): SpelExpressionParser {
        return SpelExpressionParser()
    }

    @Around(value = "@annotation(detect)")
    fun operatorAnnotation(joinPoint: ProceedingJoinPoint, detect: Detect): Any? {
        if (detect.eventId.isBlank() || detect.contentSpel.isBlank()){
            throw illegalArgumentExp("@Detect config is not available!")
        }
        //转换表达式
        val expression = spelExpressionParser.parseExpression(detect.contentSpel)
        val argMap = joinPoint.args.mapIndexed { index, any ->
            "arg${index+1}" to any
        }.toMap()
        //构建上下文
        val context = StandardEvaluationContext().apply {
            if (argMap.isNotEmpty()) this.setVariables(argMap)
        }
        //拿到结果
        val content = expression.getValue(context)

        detectManager.matchExceptionally(detect.eventId, content)
        return joinPoint.proceed()
    }
}

需要将参数放入到上下文中,并起名为arg1arg2....

四、测试一下

1.写法

使用注解之后的写法:

//简化版代码

@Service
class OcrServiceImpl : OcrService {

    @Autowired
    private lateinit var detectManager: DetectManager
    
    /**
     * 提交ocr任务
     * 需要根据用户id来做次数限制
     */
    @Detect(eventId = "ocr", contentSpel = "#arg1")
    override fun submitOcrTask(userId: String, imageUrl: String): String {
       //do ocr
    }
    
}

2.Debug看看

怎么使用Java编写一个简单的风控组件

感谢各位的阅读,以上就是“怎么使用Java编写一个简单的风控组件”的内容了,经过本文的学习后,相信大家对怎么使用Java编写一个简单的风控组件这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI