这篇文章主要介绍“Win10怎么搭建Pyspark2.4.4+Pycharm开发环境”,在日常操作中,相信很多人在Win10怎么搭建Pyspark2.4.4+Pycharm开发环境问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Win10怎么搭建Pyspark2.4.4+Pycharm开发环境”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
hadoop3.0.0
spark-2.4.4-bin-without-hadoop
winutils下载(对应hadoop3.0.1的bin目录覆盖本地hadoop的bin目录)
jdk1.8(默认已按照配置)
conda/anaconda(默认已安装)
注意:cdh7.3.2的spark为2.4.0但是使用2.4.0本地pyspark有bug,下载的文件可能在第一次解压缩后,如未出现目录,则需要修改文件后缀为zip,再次解压缩
spark2.4.x不支持python3.7以上版本
conda create -n pyspark2.4 python=3.7 activate pyspark2.4 pip install py4j pip install psutil
pyspark安装方法(推荐一)
%SPARK_HOME%\python\pyspark目录复制到%CONDA_HOME%\pyspark2.4\Lib\site-packages下
pip install pyspark=2.4.4
以下只是示例,根据实际情况修改,路径不要有空格,如果有使用mklink /J 软链接 目录路径
系统变量添加 HADOOP_HOME E:\bigdata\ENV\hadoop-3.0.0 SPARK_HOME E:\bigdata\ENV\spark-2.4.4-bin-without-hadoop PYSPARK_PYTHON C:\Users\zakza\anaconda3\envs\pyspark2.4\python.exe PATH添加 %HADOOP_HOME%\bin %SPARK_HOME%\bin
配置一 %SPARK_HOME%\conf目录下新建spark-env.cmd文件,内容如下
FOR /F %%i IN ('hadoop classpath') DO @set SPARK_DIST_CLASSPATH=%%i
配置二 %SPARK_HOME%\conf\目录下新建log4j.properties文件,内容如下
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Set everything to be logged to the console log4j.rootCategory=WARN, console log4j.appender.console=org.apache.log4j.ConsoleAppender log4j.appender.console.target=System.err log4j.appender.console.layout=org.apache.log4j.PatternLayout log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n # Set the default spark-shell log level to WARN. When running the spark-shell, the # log level for this class is used to overwrite the root logger's log level, so that # the user can have different defaults for the shell and regular Spark apps. log4j.logger.org.apache.spark.repl.Main=WARN # Settings to quiet third party logs that are too verbose log4j.logger.org.spark_project.jetty=WARN log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO log4j.logger.org.apache.parquet=ERROR log4j.logger.parquet=ERROR # SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
注意:配置好环境变量重启下电脑,不然可能存在pycharm无法加载系统环境变量的情况
wc.txt
hello hadoop hadoop spark python flink storm spark master slave first second thrid kafka scikit-learn flume hive spark-streaming hbase
wordcount测试代码
from pyspark import SparkContext if __name__ == '__main__': sc = SparkContext('local', 'WordCount') textFile = sc.textFile("wc.txt") wordCount = textFile.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey( lambda a, b: a + b) wordCount.foreach(print)
正常运行结果:
spark-shell报错Caused by: java.lang.ClassNotFoundException: org.slf4j.Logger
解决方法:见上述配置一
Pyspark报错ModuleNotFoundError: No module named 'resource'
解决方法:spark2.4.0存在的bug,使用spark2.4.4
Pyspark报错org.apache.spark.sparkexception: python worker failed to connect back
解决方法:环境变量未配置正确,检查是否遗漏,并检查pycharm的configuration的环境变量里面能够看到
关于%SPARK_HOME%\python\lib下的py4j-0.10.7-src.zip,pyspark.zip(未配置运行正常),也可以尝试添加到项目
到此,关于“Win10怎么搭建Pyspark2.4.4+Pycharm开发环境”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。