这篇文章主要介绍了Pytorch平均池化nn.AvgPool2d()如何使用的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Pytorch平均池化nn.AvgPool2d()如何使用文章都会有所收获,下面我们一起来看看吧。
在由多通道组成的输入特征中进行2D平均池化计算
torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
Args:
kernel_size: 滑窗(池化核)大小
stride: 滑窗的移动步长, 默认值为kernel_size
padding: 在输入信号两侧的隐式零填充数量
ceil_mode: 决定计算输出的形状时是向上取整还是向下取整, 默认为False(向下取整)
count_include_pad: 在平均池化计算中是否包含零填充, 默认为True(包含零填充)
divisor_override: 如果指定了, 它将被作为平均池化计算中的除数, 否则将使用池化区域的大小作为平均池化计算的除数
假设输入特征为S,输出特征为D
ceil_mode=False, count_include_pad=True(计算时包含零填充)
import torch import torch.nn as nn import numpy as np # 生成一个形状为1*1*3*3的张量 x1 = np.array([ [1,2,3], [4,5,6], [7,8,9] ]) x1 = torch.from_numpy(x1).float() x1 = x1.unsqueeze(0).unsqueeze(0) # 实例化二维平均池化 avgpool1 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False, count_include_pad=True) y1 = avgpool1(x1) print(y1) # 打印结果 ''' tensor([[[[1.3333, 1.7778], [2.6667, 3.1111]]]]) '''
计算过程:
输出形状= floor[(3 - 3 + 2) / 2] + 1 = 2,
D[1,1] = (0+0+0+0+1+2+0+4+5) / 9 = 1.3333,
D[1,2] = (0+0+0+2+3+0+5+6+0) / 9 = 1.7778,
D[2,1] = (0+4+5+0+7+8+0+0+0) / 9 = 2.6667,
D[2,2] = (5+6+0+8+9+0+0+0+0) / 9 = 3.1111.
ceil_mode=False, count_include_pad=False(计算时不包含零填充)
avgpool2 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False, count_include_pad=False) y2 = avgpool2(x1) print(y2) # 打印结果 ''' tensor([[[[3., 4.], [6., 7.]]]]) '''
计算过程:
输出形状= floor[(3 - 3 + 2) / 2] + 1 = 2,
D[1,1] = (1+2+4+5) / 4 = 3,
D[1,2] = (2+3+5+6) / 4 = 4,
D[2,1] = (4+5+7+8) / 4 = 6,
D[2,2] = (5+6+8+9) / 4 = 7.
ceil_mode=False, count_include_pad=False, divisor_override=2(将计算平均池化时的除数指定为2)
avgpool3 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False, count_include_pad=False, divisor_override=2) y3 = avgpool3(x1) print(y3) # 打印结果 ''' tensor([[[[ 6., 8.], [12., 14.]]]]) '''
计算过程:
输出形状= floor[(3 - 3 + 2) / 2] + 1 = 2,
D[1,1] = (1+2+4+5) / 2 = 6,
D[1,2] = (2+3+5+6) / 2 = 8,
D[2,1] = (4+5+7+8) / 2 = 12,
D[2,2] = (5+6+8+9) / 2 = 14.
ceil_mode=True, count_include_pad=True, divisor_override=None(在计算输出的形状时向上取整)
x2 = np.array([ [1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14,15,16] ]) x2 = torch.from_numpy(x2).reshape(1,1,4,4).float() avgpool4 = nn.AvgPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True) y4 = avgpool4(x2) print(y4) # 打印结果 ''' tensor([[[[ 1.5556, 3.3333, 2.0000], [ 6.3333, 11.0000, 6.0000], [ 4.5000, 7.5000, 4.0000]]]]) '''
计算过程:
输出形状 = ceil[(4 - 3 + 2) / 2] + 1 = 3,
D[1,1] = (0+0+0+0+1+2+0+5+6) / 9 = 1.5556,
D[1,2] = (0+0+0+2+3+4+6+7+8) / 9 = 3.3333,
D[1,3] = (0+0+4+0+8+0) / 6 = 2,
D[2,1] = (0+5+6+0+9+10+0+13+14) / 9 = 6.3333,
D[2,2] = (6+7+8+10+11+12+14+15+16) / 9 = 11,
D[2,3] = (8+0+12+0+16+0) / 6 = 6,
D[3,1] = (0+13+14+0+0+0) / 6 = 4.5,
D[3,2] = (14+15+16+0+0+0) / 6 = 7.5,
D[3,3] = (16+0+0+0) / 4 = 4.
关于“Pytorch平均池化nn.AvgPool2d()如何使用”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“Pytorch平均池化nn.AvgPool2d()如何使用”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。