温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

redis分布式ID解决方法有哪些

发布时间:2023-03-07 16:29:54 来源:亿速云 阅读:114 作者:iii 栏目:开发技术

这篇文章主要介绍“redis分布式ID解决方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“redis分布式ID解决方法有哪些”文章能帮助大家解决问题。

    常用的分布式ID解决方案

    在分布式系统中,生成全局唯一ID是非常重要的,因为在分布式系统中,多个节点同时生成ID可能会导致ID冲突。

    下面介绍几种常用的分布式ID解决方案。

    UUID

    UUID(通用唯一标识符)是由128位数字组成的标识符,它可以保证在全球范围内的唯一性,因为其生成算法基于时间戳、节点ID等因素。UUID可以使用Java自带的UUID类来生成,如下所示:

    javaCopy code
    import java.util.UUID;
    public class UuidGenerator {
        public static void main(String[] args) {
            UUID uuid = UUID.randomUUID();
            System.out.println(uuid.toString());
        }
    }

    UUID的优点是简单易用,无需额外的配置和管理,可以直接使用Java自带的UUID类生成。但是UUID长度较长(128位),不太适合作为数据库表的主键,且不易于排序和索引。

    Snowflake

    Snowflake是Twitter开源的一种分布式ID生成算法,它可以生成64位的唯一ID,其中包含了时间戳、数据中心ID和机器ID等信息。Snowflake算法的Java代码如下所示:

    Snowflake算法的Java代码:
    javaCopy code
    public class SnowflakeGenerator {
        private final static long START_STMP = 1480166465631L;
        private final static long SEQUENCE_BIT = 12;
        private final static long MACHINE_BIT = 5;
        private final static long DATACENTER_BIT = 5;
        private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
        private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
        private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
        private final static long MACHINE_LEFT = SEQUENCE_BIT;
        private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
        private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
        private long datacenterId;
        private long machineId;
        private long sequence = 0L;
        private long lastStmp = -1L;
        public SnowflakeGenerator(long datacenterId, long machineId) {
            if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
                throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
            }
            if (machineId > MAX_MACHINE_NUM || machineId < 0) {
                throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
            }
            this.datacenterId = datacenterId;
            this.machineId = machineId;
        }
        public synchronized long nextId() {
            long currStmp = getNewstmp();
            if (currStmp < lastStmp) {
                throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
            }
            if (currStmp == lastStmp) {
                sequence = (sequence + 1) & MAX_SEQUENCE;
                if (sequence == 0L) {
                    currStmp = getNextMill();
                }
            } else {
                sequence = 0L;
            }
            lastStmp = currStmp;
            return (currStmp - START_STMP) << TIMESTMP_LEFT
                    | datacenterId << DATACENTER_LEFT
                    | machineId << MACHINE_LEFT
                    | sequence;
        }
        private long getNextMill() {
            long mill = getNewstmp();
            while (mill <= lastStmp) {
                mill = getNewstmp();
            }
            return mill;
        }
        private long getNewstmp() {
            return System.currentTimeMillis();
        }
    }

    Snowflake算法的优点是生成ID的性能高,且ID长度较短(64位),可以作为数据库表的主键,且便于排序和索引。但是需要注意,如果集群中的节点数超过了机器ID所占的位数,或者集群规模很大,时间戳位数不够用,那么就需要考虑其他的分布式ID生成算法。

    Leaf

    Leaf是美团点评开源的一种分布式ID生成算法,它可以生成全局唯一的64位ID。Leaf算法的Java代码如下所示:

    Leaf算法的Java代码:
    javaCopy code
    public class LeafGenerator {
        private static final Logger logger = LoggerFactory.getLogger(LeafGenerator.class);
        private static final String WORKER_ID_KEY = "leaf.worker.id";
        private static final String PORT_KEY = "leaf.port";
        private static final int DEFAULT_PORT = 8080;
        private static final int DEFAULT_WORKER_ID = 0;
        private static final int WORKER_ID_BITS = 10;
        private static final int SEQUENCE_BITS = 12;
        private static final int MAX_WORKER_ID = (1 << WORKER_ID_BITS) - 1;
        private static final int MAX_SEQUENCE = (1 << SEQUENCE_BITS) - 1;
        private static final long EPOCH = 1514736000000L;
        private final SnowflakeIdWorker idWorker;
        public LeafGenerator() {
            int workerId = SystemPropertyUtil.getInt(WORKER_ID_KEY, DEFAULT_WORKER_ID);
            int port = SystemPropertyUtil.getInt(PORT_KEY, DEFAULT_PORT);
            this.idWorker = new SnowflakeIdWorker(workerId, port);
            logger.info("Initialized LeafGenerator with workerId={}, port={}", workerId, port);
        }
        public long nextId() {
            return idWorker.nextId();
        }
        private static class SnowflakeIdWorker {
            private final long workerId;
            private final long port;
            private long sequence = 0L;
            private long lastTimestamp = -1L;
            SnowflakeIdWorker(long workerId, long port) {
                if (workerId < 0 || workerId > MAX_WORKER_ID) {
                    throw new IllegalArgumentException(String.format("workerId must be between %d and %d", 0, MAX_WORKER_ID));
                }
                this.workerId = workerId;
                this.port = port;
            }
            synchronized long nextId() {
                long timestamp = System.currentTimeMillis();
                if (timestamp < lastTimestamp) {
                    throw new RuntimeException("Clock moved backwards. Refusing to generate id");
                }
                if (timestamp == lastTimestamp) {
                    sequence = (sequence + 1) & MAX_SEQUENCE;
                    if (sequence == 0L) {
                        timestamp = tilNextMillis(lastTimestamp);
                    }
                } else {
                    sequence = 0L;
                }
                lastTimestamp = timestamp;
                return ((timestamp - EPOCH) << (WORKER_ID_BITS + SEQUENCE_BITS))
                        | (workerId << SEQUENCE_BITS)
                        | sequence;
            }
            private long tilNextMillis(long lastTimestamp) {
                long timestamp = System.currentTimeMillis();
                while (timestamp <= lastTimestamp) {
                    timestamp = System.currentTimeMillis();
                }
                return timestamp;
            }
        }
    }

    Leaf算法的特点是生成ID的速度比Snowflake算法略慢,但是可以支持更多的Worker节点。Leaf算法生成的ID由三部分组成,分别是时间戳、Worker ID和序列号,其中时间戳占用42位、Worker ID占用10位、序列号占用12位,总共64位。

    以上是常见的分布式ID生成算法,当然还有其他的一些方案,如:MongoDB ID、UUID、Twitter Snowflake等。不同的方案适用于不同的业务场景,具体实现细节和性能表现也有所不同,需要根据实际情况选择合适的方案。

    除了上述介绍的分布式ID生成算法,还有一些新的分布式ID生成方案不断涌现,例如Flicker的分布式ID生成算法,它使用了类似于Snowflake的思想,但是采用了不同的位数分配方式,相比Snowflake更加灵活,并且可以根据需要动态调整每个部分占用的位数。此外,Facebook还推出了ID Generation Service (IGS)方案,该方案将ID的生成和存储分离,提供了更加灵活和可扩展的方案,但是需要进行更加复杂的架构设计和实现。

    针对不同的业务需求,可以设计多套分布式ID生成方案。下面是我个人的一些建议:

    • 基于数据库自增ID生成:使用数据库自增ID作为全局唯一ID,可以很好的保证ID的唯一性,并且实现简单,但是并发量较高时可能会导致性能瓶颈。因此,在高并发场景下不建议使用。

    • 基于UUID生成:使用UUID作为全局唯一ID,可以很好地保证ID的唯一性,但是ID长度较长(128位),不便于存储和传输,并且存在重复ID的概率非常小但不为0。因此,建议在分布式系统中使用时要考虑ID的长度和存储传输的成本。

    • 基于Redis生成:使用Redis的原子性操作,可以保证ID的唯一性,并且生成ID的速度非常快,可以适用于高并发场景。但是需要注意,如果Redis宕机或者性能不足,可能会影响ID的生成效率和可用性。

    • 基于ZooKeeper生成:使用ZooKeeper的序列号生成器,可以保证ID的唯一性,并且实现较为简单,但是需要引入额外的依赖和资源,并且可能会存在性能瓶颈。

    选择适合自己业务场景的分布式ID生成方案,需要综合考虑ID的唯一性、生成速度、长度、存储成本、可扩展性、可用性等多个因素。同时需要注意,不同方案的实现细节和性能表现也有所不同,需要根据实际情况进行权衡和选择。

    下面给出每种方案的详细代码demo:

    基于数据库自增ID生成

    javaCopy code
    public class IdGenerator {
        private static final String JDBC_URL = "jdbc:mysql://localhost:3306/test";
        private static final String JDBC_USER = "root";
        private static final String JDBC_PASSWORD = "password";
        public long generateId() {
            Connection conn = null;
            PreparedStatement pstmt = null;
            ResultSet rs = null;
            try {
                Class.forName("com.mysql.jdbc.Driver");
                conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);
                pstmt = conn.prepareStatement("INSERT INTO id_generator (stub) VALUES (null)", Statement.RETURN_GENERATED_KEYS);
                pstmt.executeUpdate();
                rs = pstmt.getGeneratedKeys();
                if (rs.next()) {
                    return rs.getLong(1);
                }
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                try {
                    if (rs != null) {
                        rs.close();
                    }
                    if (pstmt != null) {
                        pstmt.close();
                    }
                    if (conn != null) {
                        conn.close();
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
            return 0L;
        }
    }

    基于UUID生成

    javaCopy code
    import java.util.UUID;
    public class IdGenerator {
        public String generateId() {
            return UUID.randomUUID().toString().replace("-", "");
        }
    }

    基于Redis生成

    javaCopy code
    import redis.clients.jedis.Jedis;
    public class IdGenerator {
        private static final String REDIS_HOST = "localhost";
        private static final int REDIS_PORT = 6379;
        private static final String REDIS_PASSWORD = "password";
        private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
        private static final String ID_GENERATOR_KEY = "id_generator";
        public long generateId() {
            Jedis jedis = null;
            try {
                jedis = new Jedis(REDIS_HOST, REDIS_PORT);
                jedis.auth(REDIS_PASSWORD);
                long id = jedis.incr(ID_GENERATOR_KEY);
                jedis.expire(ID_GENERATOR_KEY, ID_GENERATOR_EXPIRE_SECONDS);
                return id;
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                if (jedis != null) {
                    jedis.close();
                }
            }
            return 0L;
        }
    }

    基于ZooKeeper生成

    javaCopy code
    import java.util.concurrent.CountDownLatch;
    import org.apache.zookeeper.CreateMode;
    import org.apache.zookeeper.WatchedEvent;
    import org.apache.zookeeper.Watcher;
    import org.apache.zookeeper.ZooDefs.Ids;
    import org.apache.zookeeper.ZooKeeper;
    public class IdGenerator implements Watcher {
        private static final String ZK_HOST = "localhost";
        private static final int ZK_PORT = 2181;
        private static final int SESSION_TIMEOUT = 5000;
        private static final String ID_GENERATOR_NODE = "/id_generator";
        private static final int ID_GENERATOR_EXPIRE_SECONDS = 3600;
        private long workerId = 0;
        public IdGenerator() {
            try {
                ZooKeeper zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, this);
                CountDownLatch latch = new CountDownLatch(1);
                latch.await();
                if (zk.exists(ID_GENERATOR_NODE, false) == null) {
                    zk.create(ID_GENERATOR_NODE, null, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
                }
                workerId = zk.getChildren(ID_GENERATOR_NODE, false).size();
                zk.create(ID_GENERATOR_NODE + "/worker_" + workerId, null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        public long generateId() {
            ZooKeeper zk = null;
            try {
                zk = new ZooKeeper(ZK_HOST + ":" + ZK_PORT, SESSION_TIMEOUT, null);
                CountDownLatch latch = new CountDownLatch(1);
                latch.await();
                zk.create(ID_GENERATOR_NODE + "/id_", null, Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, (rc, path, ctx, name) -> {}, null);
                byte[] data = zk.getData(ID_GENERATOR_NODE + "/worker_" + workerId, false, null);
                long id = Long.parseLong(new String(data)) * 10000 + zk.getChildren(ID_GENERATOR_NODE, false).size();
                return id;
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                if (zk != null) {
                    try {
                        zk.close();
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                }
            }
            return 0L;
        }
        @Override
        public void process(WatchedEvent event) {
            if (event.getState() == Event.KeeperState.SyncConnected) {
                System.out.println("Connected to ZooKeeper");
                CountDownLatch latch = new CountDownLatch(1);
                latch.countDown();
            }
        }
    }

    注意,这里使用了ZooKeeper的临时节点来协调各个工作节点,如果一个工作节点挂掉了,它的临时节点也会被删除,这样可以保证每个工作节点获得的ID是唯一的。

    关于“redis分布式ID解决方法有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI