这篇文章主要介绍“Sklearn实现人脸补全的方法有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Sklearn实现人脸补全的方法有哪些”文章能帮助大家解决问题。
import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression,Ridge,Lasso from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor import numpy as np
faces=datasets.fetch_olivetti_faces() images=faces.images display(images.shape) index=np.random.randint(0,400,size=1)[0] img=images[index] plt.figure(figsize=(3,3)) plt.imshow(img,cmap=plt.cm.gray)
index=np.random.randint(0,400,size=1)[0] up_face=images[:,:32,:] down_face=images[:,32:,:] axes=plt.subplot(1,3,1) axes.imshow(up_face[index],cmap=plt.cm.gray) axes=plt.subplot(1,3,2) axes.imshow(down_face[index],cmap=plt.cm.gray) axes=plt.subplot(1,3,3) axes.imshow(images[index],cmap=plt.cm.gray)
X=faces.data x=X[:,:2048] y=X[:,2048:] estimators={} estimators['linear']=LinearRegression() estimators['ridge']=Ridge(alpha=0.1) estimators['lasso']=Lasso(alpha=1) estimators['knn']=KNeighborsRegressor(n_neighbors=5) estimators['tree']=DecisionTreeRegressor() estimators['forest']=RandomForestRegressor()
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2) result={} print for key,model in estimators.items(): print(key) model.fit(x_train,y_train) y_=model.predict(x_test) result[key]=y_
plt.figure(figsize=(40,40)) for i in range(0,10): #第一列,上半张人脸 axes=plt.subplot(10,8,8*i+1) up_face=x_test[i].reshape(32,64) axes.imshow(up_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title('up-face') #第8列,整张人脸 axes=plt.subplot(10,8,8*i+8) down_face=y_test[i].reshape(32,64) full_face=np.concatenate([up_face,down_face]) axes.imshow(full_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title('full-face') #绘制预测人脸 for j,key in enumerate(result): axes=plt.subplot(10,8,i*8+2+j) y_=result[key] predice_face=y_[i].reshape(32,64) pre_face=np.concatenate([up_face,predice_face]) axes.imshow(pre_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title(key)
import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression,Ridge,Lasso from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor import numpy as np faces=datasets.fetch_olivetti_faces() images=faces.images display(images.shape) index=np.random.randint(0,400,size=1)[0] img=images[index] plt.figure(figsize=(3,3)) plt.imshow(img,cmap=plt.cm.gray) index=np.random.randint(0,400,size=1)[0] up_face=images[:,:32,:] down_face=images[:,32:,:] axes=plt.subplot(1,3,1) axes.imshow(up_face[index],cmap=plt.cm.gray) axes=plt.subplot(1,3,2) axes.imshow(down_face[index],cmap=plt.cm.gray) axes=plt.subplot(1,3,3) axes.imshow(images[index],cmap=plt.cm.gray) X=faces.data x=X[:,:2048] y=X[:,2048:] estimators={} estimators['linear']=LinearRegression() estimators['ridge']=Ridge(alpha=0.1) estimators['lasso']=Lasso(alpha=1) estimators['knn']=KNeighborsRegressor(n_neighbors=5) estimators['tree']=DecisionTreeRegressor() estimators['forest']=RandomForestRegressor() x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2) result={} print for key,model in estimators.items(): print(key) model.fit(x_train,y_train) y_=model.predict(x_test) result[key]=y_ plt.figure(figsize=(40,40)) for i in range(0,10): #第一列,上半张人脸 axes=plt.subplot(10,8,8*i+1) up_face=x_test[i].reshape(32,64) axes.imshow(up_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title('up-face') #第8列,整张人脸 axes=plt.subplot(10,8,8*i+8) down_face=y_test[i].reshape(32,64) full_face=np.concatenate([up_face,down_face]) axes.imshow(full_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title('full-face') #绘制预测人脸 for j,key in enumerate(result): axes=plt.subplot(10,8,i*8+2+j) y_=result[key] predice_face=y_[i].reshape(32,64) pre_face=np.concatenate([up_face,predice_face]) axes.imshow(pre_face,cmap=plt.cm.gray) axes.axis('off') if i==0: axes.set_title(key)
关于“Sklearn实现人脸补全的方法有哪些”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。