今天小编给大家分享一下Go语言中锁如何实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
// Lock locks m. // If the lock is already in use, the calling goroutine // blocks until the mutex is available. func (m *Mutex) Lock() { // Fast path: grab unlocked mutex. // 上锁,成功返回 if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) { if race.Enabled { race.Acquire(unsafe.Pointer(m)) } return } // Slow path (outlined so that the fast path can be inlined) //已经锁上的写成进入慢锁流程 m.lockSlow() }
func (m *Mutex) lockSlow() { var waitStartTime int64 //执行时间 starving := false //当前请求是否是饥饿模式 awoke := false //当前请求是否是唤醒状态 iter := 0 //自旋次数 old := m.state //旧state值 for { // Don't spin in starvation mode, ownership is handed off to waiters // so we won't be able to acquire the mutex anyway. //旧state值已上锁,并且未进入饥饿模式,且可以自旋,进入自旋逻辑 if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) { // Active spinning makes sense. // Try to set mutexWoken flag to inform Unlock // to not wake other blocked goroutines. // 当前协程未唤醒 //&& old.state 为未唤起状态,就是说没有其他被唤起的waiter //&& waiter数>0 //&& m.state标记为唤起状态成功 if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 && atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) { //标记当前协程为唤起状态 //r: 这是为了通知在解锁Unlock()中不要再唤醒其他的waiter了 awoke = true } //自旋 runtime_doSpin() //自旋计数器 iter++ old = m.state continue } //r: old是锁当前的状态,new是期望的状态,以期于在后面的CAS操作中更改锁的状态 //new代表期望的state值 new := old // Don't try to acquire starving mutex, new arriving goroutines must queue. //old不是饥饿状态,new带上上锁标志位,也就是饥饿状态不上锁 if old&mutexStarving == 0 { new |= mutexLocked } //旧state值是上锁状态或饥饿状态,新state waiter数+1 //r: 表示当前goroutine将被作为waiter置于等待队列队尾 if old&(mutexLocked|mutexStarving) != 0 { new += 1 << mutexWaiterShift } // The current goroutine switches mutex to starvation mode. // But if the mutex is currently unlocked, don't do the switch. // Unlock expects that starving mutex has waiters, which will not // be true in this case. //当前协程为饥饿状态&&旧state已上锁,新state加饥饿标志位 if starving && old&mutexLocked != 0 { new |= mutexStarving } //r:? 当awoke为true,则表明当前goroutine在自旋逻辑中,成功修改锁的Woken状态位为1 if awoke { // The goroutine has been woken from sleep, // so we need to reset the flag in either case. if new&mutexWoken == 0 { throw("sync: inconsistent mutex state") } //新state关闭唤醒标志位 //r: 因为在后续的逻辑中,当前goroutine要么是拿到锁了,要么是被挂起。 // 如果是挂起状态,那就需要等待其他释放锁的goroutine来唤醒。 // 假如其他goroutine在unlock的时候发现Woken的位置不是0,则就不会去唤醒,那该goroutine就无法再醒来加锁。(见unlock逻辑) new &^= mutexWoken } //r: 尝试将锁的状态更新为期望状态 if atomic.CompareAndSwapInt32(&m.state, old, new) { //旧state不是锁或饥饿状态,上锁成功,返回 if old&(mutexLocked|mutexStarving) == 0 { break // locked the mutex with CAS } // If we were already waiting before, queue at the front of the queue. //r: 如果走到这里,那就证明当前goroutine没有获取到锁 // 这里判断waitStartTime != 0就证明当前goroutine之前已经等待过了,则需要将其放置在等待队列队头 //进入队列是否排在最前 queueLifo := waitStartTime != 0 if waitStartTime == 0 { waitStartTime = runtime_nanotime() } //阻塞 runtime_SemacquireMutex(&m.sema, queueLifo, 1) //r: 被信号量唤醒之后检查当前goroutine是否应该表示为饥饿 // (这里表示为饥饿之后,会在下一轮循环中尝试将锁的状态更改为饥饿模式) // 1. 如果当前goroutine已经饥饿(在上一次循环中更改了starving为true) // 2. 如果当前goroutine已经等待了1ms以上 //被信号量唤醒后当前协程是否进入饥饿状态 //1. 之前是饥饿状态 //2. 运行时间超过1ms starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs // 再次获取锁状态 old = m.state if old&mutexStarving != 0 { // If this goroutine was woken and mutex is in starvation mode, // ownership was handed off to us but mutex is in somewhat // inconsistent state: mutexLocked is not set and we are still // accounted as waiter. Fix that. //饥饿模式协程是在Unlock()时handoff到当前协程的 //r:? 如果当前锁既不是被获取也不是被唤醒状态,或者等待队列为空 // 这代表锁状态产生了不一致的问题 if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 { throw("sync: inconsistent mutex state") } //m.state 上锁,waiter数-1 delta := int32(mutexLocked - 1<<mutexWaiterShift) //当前协程不是饥饿状态或旧state的waiter数=1,则m.state饥饿标志位置0 if !starving || old>>mutexWaiterShift == 1 { // Exit starvation mode. // Critical to do it here and consider wait time. // Starvation mode is so inefficient, that two goroutines // can go lock-step infinitely once they switch mutex // to starvation mode. delta -= mutexStarving } atomic.AddInt32(&m.state, delta) //拿到锁,退出. break } awoke = true iter = 0 } else { //执行循环前的语句,恢复最新现场 old = m.state } } if race.Enabled { race.Acquire(unsafe.Pointer(m)) } }
// Unlock unlocks m. // It is a run-time error if m is not locked on entry to Unlock. // // A locked Mutex is not associated with a particular goroutine. // It is allowed for one goroutine to lock a Mutex and then // arrange for another goroutine to unlock it. func (m *Mutex) Unlock() { if race.Enabled { _ = m.state race.Release(unsafe.Pointer(m)) } // Fast path: drop lock bit. //m.state取消锁状态,返回值new代表修改后的新值 //如果为0代表没有其他锁了,退出;否则进入unlockSlow() //锁空闲有两种情况: //1. 所有位为0,代表没有锁了 //2. 标志位为0, waiter数量>0,还有协程在等待解锁 new := atomic.AddInt32(&m.state, -mutexLocked) if new != 0 { // Outlined slow path to allow inlining the fast path. // To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock. m.unlockSlow(new) } }
func (m *Mutex) unlockSlow(new int32) { if (new+mutexLocked)&mutexLocked == 0 { throw("sync: unlock of unlocked mutex") } if new&mutexStarving == 0 { old := new for { // If there are no waiters or a goroutine has already // been woken or grabbed the lock, no need to wake anyone. // In starvation mode ownership is directly handed off from unlocking // goroutine to the next waiter. We are not part of this chain, // since we did not observe mutexStarving when we unlocked the mutex above. // So get off the way. //解锁,结束,退出 //1. 没有waiter了 //2. 已上锁 //3. 锁处于唤醒状态,表示有协程被唤醒 //4. 饥饿模式, 所有权交给了被解锁饥饿模式的waiter if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 { return } // Grab the right to wake someone. // 如果能走到这,那就是上面的if判断没通过 // 说明当前锁是空闲状态,但是等待队列中有waiter,且没有goroutine被唤醒 // 所以,这里我们想要把锁的状态设置为被唤醒,等待队列waiter数-1 new = (old - 1<<mutexWaiterShift) | mutexWoken if atomic.CompareAndSwapInt32(&m.state, old, new) { //通过信号量唤醒某一个waiter,退出 runtime_Semrelease(&m.sema, false, 1) return } //失败的话,更新old信息,进入下个循环 old = m.state } } else { // Starving mode: handoff mutex ownership to the next waiter, and yield // our time slice so that the next waiter can start to run immediately. // Note: mutexLocked is not set, the waiter will set it after wakeup. // But mutex is still considered locked if mutexStarving is set, // so new coming goroutines won't acquire it. //饥饿模式,唤醒等待队列队头waiter runtime_Semrelease(&m.sema, true, 1) } }
runtime_canSpin
是否可自旋,不展开
runtime_doSpin
核心是汇编实现,循环执行三十次PAUSE指令
runtime_SemacquireMutex
信号量上锁
sem来自单词semaphore 信号量
runtime_Semrelease
信号量释放
func runtime_Semrelease(s *uint32, handoff bool, skipframes int)
If handoff is true, pass count directly to the first waiter.
handoff 就是传球的意思,handoff 为 false 时,仅仅唤醒等待队列中第一个协程,但是不会立马调度该协程;当 handoff 为 true 时,会立马调度被唤醒的协程,此外,当 handoff = true 时,被唤醒的协程会继承当前协程的时间片。具体例子,假设每个 goroutine 的时间片为 2ms,gorounte A 已经执行了 1ms,假设它通过 runtime_Semrelease(handoff = true) 唤醒了 goroutine B,则 goroutine B 剩余的时间片为 2 - 1 = 1ms。
golang 中 sync.Mutex 的实现
semrelease1(addr, handoff, skipframes) 参数handoff若为true,则让被唤醒的g立刻继承当前g的时间片继续执行。若handoff为false,则把刚被唤醒的g放到当前p的runq中。
Golang sync.Mutex 源码分析
很简单,看源码就行
[Go并发] - RWMutex源码解析
type RWMutex struct { w Mutex // held if there are pending writers writerSem uint32 // semaphore for writers to wait for completing readers readerSem uint32 // semaphore for readers to wait for completing writers readerCount int32 // number of pending readers 当前读锁数量 readerWait int32 // number of departing readers 要离开的读锁数量,暨等待写锁解锁,解锁后可以释放的读锁数量 }
// Lock locks rw for writing. // If the lock is already locked for reading or writing, // Lock blocks until the lock is available. func (rw *RWMutex) Lock() { if race.Enabled { _ = rw.w.state race.Disable() } // First, resolve competition with other writers. rw.w.Lock() //通过sync.Lock()限制多写锁进入下边的逻辑 // Announce to readers there is a pending writer. //r值不变, rwmutexMaxReaders值为1<<30 //可以理解为只要读锁的数量小于1<<30位,rw.readerCount值<0表示有写锁. //也可以理解为加上一个负数,将31位以上都标记为1,代表有写锁, 剩余30位记录读锁数量 r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders // Wait for active readers. //r!=0 有读锁,不能释放写锁 //将readerCount转移到readerWait,readerWait的新值!=0 (以上可以翻译为有读锁,将读锁数转移到读等待数,然后写锁阻塞,) // 满足上面两个条件,写锁阻塞, 等待唤醒,不返回 if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 { runtime_SemacquireMutex(&rw.writerSem, false, 0) } if race.Enabled { race.Enable() race.Acquire(unsafe.Pointer(&rw.readerSem)) race.Acquire(unsafe.Pointer(&rw.writerSem)) } }
// Unlock unlocks rw for writing. It is a run-time error if rw is // not locked for writing on entry to Unlock. // // As with Mutexes, a locked RWMutex is not associated with a particular // goroutine. One goroutine may RLock (Lock) a RWMutex and then // arrange for another goroutine to RUnlock (Unlock) it. func (rw *RWMutex) Unlock() { if race.Enabled { _ = rw.w.state race.Release(unsafe.Pointer(&rw.readerSem)) race.Disable() } // Announce to readers there is no active writer.\ //将Lock()方法减去的值加回来,变成正数 r := atomic.AddInt32(&rw.readerCount, rwmutexMaxReaders) if r >= rwmutexMaxReaders { race.Enable() throw("sync: Unlock of unlocked RWMutex") } // Unblock blocked readers, if any. //唤醒在RLock()方法阻塞的读操作,数量为r for i := 0; i < int(r); i++ { runtime_Semrelease(&rw.readerSem, false, 0) } // Allow other writers to proceed. rw.w.Unlock() if race.Enabled { race.Enable() } }
// RLock locks rw for reading. // // It should not be used for recursive read locking; a blocked Lock // call excludes new readers from acquiring the lock. See the // documentation on the RWMutex type. func (rw *RWMutex) RLock() { if race.Enabled { _ = rw.w.state race.Disable() } //<0表示已上写锁,阻塞 if atomic.AddInt32(&rw.readerCount, 1) < 0 { // A writer is pending, wait for it. runtime_SemacquireMutex(&rw.readerSem, false, 0) } if race.Enabled { race.Enable() race.Acquire(unsafe.Pointer(&rw.readerSem)) } }
// RUnlock undoes a single RLock call; // it does not affect other simultaneous readers. // It is a run-time error if rw is not locked for reading // on entry to RUnlock. func (rw *RWMutex) RUnlock() { if race.Enabled { _ = rw.w.state race.ReleaseMerge(unsafe.Pointer(&rw.writerSem)) race.Disable() } //<0表示已上写锁,慢解锁 if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 { // Outlined slow-path to allow the fast-path to be inlined rw.rUnlockSlow(r) } if race.Enabled { race.Enable() } } // RUnlock undoes a single RLock call; // it does not affect other simultaneous readers. // It is a run-time error if rw is not locked for reading // on entry to RUnlock. func (rw *RWMutex) rUnlockSlow(r int32) { if r+1 == 0 || r+1 == -rwmutexMaxReaders { race.Enable() throw("sync: RUnlock of unlocked RWMutex") } // A writer is pending. //最后一个读等待,唤醒写锁 if atomic.AddInt32(&rw.readerWait, -1) == 0 { // The last reader unblocks the writer. runtime_Semrelease(&rw.writerSem, false, 1) } }
以上就是“Go语言中锁如何实现”这篇文章的所有内容,感谢各位的阅读!相信大家阅读完这篇文章都有很大的收获,小编每天都会为大家更新不同的知识,如果还想学习更多的知识,请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。