温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python sklearn CountVectorizer如何使用

发布时间:2023-03-23 13:58:07 来源:亿速云 阅读:210 作者:iii 栏目:开发技术

本篇内容介绍了“Python sklearn CountVectorizer如何使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

简介

CountVectorizer官方文档。

将一个文档集合向量化为为一个计数矩阵。

如果不提供一个先验字典,不使用分析器做某种特征选择,那么特征的数量将等于通过分析数据发现的词汇量。

数据预处理

两种方法:1.可以不分词直接投入模型;2.可以先将中文文本进行分词。

两种方法产生的词汇会非常不同。在后面会具体给出示范。

import jieba
import re
from sklearn.feature_extraction.text import CountVectorizer
#原始数据
text = ['很少在公众场合手机外放',
        '大部分人都还是很认真去学习的',
        '他们会用行动来',
        '无论你现在有多颓废,振作起来',
        '只需要一点点地改变',
        '你的外在和内在都能焕然一新']
#提取中文
text = [' '.join(re.findall('[\u4e00-\u9fa5]+',tt,re.S)) for tt in text]
#分词
text = [' '.join(jieba.lcut(tt)) for tt in text]
text

Python sklearn CountVectorizer如何使用

构建模型

训练模型

#构建模型
vectorizer = CountVectorizer()
#训练模型
X = vectorizer.fit_transform(text)

所有词汇:model.get_feature_names()

#所有文档汇集后生成的词汇
feature_names = vectorizer.get_feature_names()
print(feature_names)

不分词生成的词汇

Python sklearn CountVectorizer如何使用

分词后生成的词汇

Python sklearn CountVectorizer如何使用

计数矩阵:X.toarray()

#每个文档相对词汇量出现次数形成的矩阵
matrix = X.toarray()
print(matrix)

Python sklearn CountVectorizer如何使用

#计数矩阵转化为DataFrame
df = pd.DataFrame(matrix, columns=feature_names)
df

Python sklearn CountVectorizer如何使用

词汇索引:model.vocabulary_

print(vectorizer.vocabulary_)

Python sklearn CountVectorizer如何使用

“Python sklearn CountVectorizer如何使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI