本文小编为大家详细介绍“怎么用GAN训练自己数据生成新的图片”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么用GAN训练自己数据生成新的图片”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
# MNIST dataset mnist = datasets.MNIST( root='./data/', train=True, transform=img_transform, download=True) # Data loader dataloader = torch.utils.data.DataLoader( dataset=mnist, batch_size=batch_size, shuffle=True)
可以看到,datasets.MNIST这个肯定不能用于我们自己的数据。我借鉴了原来做二分类的datasets.ImageFolder。
发现老是报错:
RuntimeError: Found 0 files in subfolders of: E:\Projects\gan\battery\ng
Supported extensions are: .jpg,.jpeg,.png,.ppm,.bmp,.pgm,.tif,.tiff,.webp
后面单步调试,原来这个函数是需要文件夹下面有分类标签的,根据子文件夹名生成分类标签。
故放弃,只能自己写了。
下面是参考网上的,写了个读取数据的函数:
import numpy as np import torch import os import random from PIL import Image from torch.utils.data import Dataset class myDataset(Dataset): def __init__(self, data_dir, transform): self.data_dir = data_dir self.transform = transform self.img_names = [name for name in list(filter(lambda x: x.endswith(".jpg"), os.listdir(self.data_dir)))] def __getitem__(self, index): path_img = os.path.join(self.data_dir, self.img_names[index]) img = Image.open(path_img).convert('RGB') if self.transform is not None: img = self.transform(img) return img def __len__(self): if len(self.img_names) == 0: raise Exception("\ndata_dir:{} is a empty dir! Please checkout your path to images!".format(self.data_dir)) return len(self.img_names)
解决了读取数据之后,发现可以训练了,因为参考链接的MINIST数据都是单通道的,我们大部分图像都是3通道的,所以我将通道改为3后,发现判别器那块老是报错,标签和数据不匹配。
RuntimeError: mat1 dim 1 must match mat2 dim 0
后面一查,发现问题出在这句上面:
for i, (imgs, _) in enumerate(dataloader)
这样得到的imgs已经没有batch-size的信息了,需要改为这样:
for i, imgs in enumerate(dataloader):
下面是整个代码块,贴上去记录下来,以便过段时间万一忘了,还有个看的地方。
import argparse import os import numpy as np import math # import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.data import DataLoader from torchvision import datasets, models, transforms from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from tools.my_dataset import myDataset import torch os.makedirs("images", exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=50, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=2, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=400, help="interval betwen image samples") opt = parser.parse_args() print(opt) img_shape = (opt.channels, opt.img_size, opt.img_size) cuda = True if torch.cuda.is_available() else False print('cuda is',cuda) class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() def block(in_feat, out_feat, normalize=True): layers = [nn.Linear(in_feat, out_feat)] if normalize: layers.append(nn.BatchNorm1d(out_feat, 0.8)) layers.append(nn.LeakyReLU(0.2, inplace=True)) return layers self.model = nn.Sequential( *block(opt.latent_dim, 128, normalize=False), *block(128, 256), *block(256, 512), *block(512, 1024), nn.Linear(1024, int(np.prod(img_shape))), nn.Tanh() ) def forward(self, z): img = self.model(z) img = img.view(img.size(0), *img_shape) return img class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Linear(int(np.prod(img_shape)), 512), nn.LeakyReLU(0.2, inplace=True), nn.Linear(512, 256), nn.LeakyReLU(0.2, inplace=True), nn.Linear(256, 1), nn.Sigmoid(), ) def forward(self, img): img_flat = img.view(img.size(0), -1) validity = self.model(img_flat) return validity # Loss function adversarial_loss = torch.nn.BCELoss() # Initialize generator and discriminator generator = Generator() discriminator = Discriminator() if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() # # Configure data loader # os.makedirs("./data/mnist", exist_ok=True) # dataloader = torch.utils.data.DataLoader( # datasets.MNIST( # "./data/mnist", # train=True, # download=True, # transform=transforms.Compose( # [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])] # ), # ), # batch_size=opt.batch_size, # shuffle=True, # ) dataset = r'E:\Projects\gan\battery' ng_directory = os.path.join(dataset, 'ng') ok_directory = os.path.join(dataset, 'ok') image_transforms = { 'ng': transforms.Compose([ transforms.Resize([opt.img_size,opt.img_size]), transforms.ToTensor(), ]), 'ok': transforms.Compose([ transforms.Resize([opt.img_size,opt.img_size]), transforms.ToTensor(), ])} data = { 'ng': myDataset(data_dir=ng_directory, transform=image_transforms['ng']), 'ok': myDataset(data_dir=ok_directory, transform=image_transforms['ok']) } dataloader = DataLoader(data['ng'], batch_size=opt.batch_size, shuffle=True) ng_data_size = len(data['ng']) ok_data_size = len(data['ok']) print('train_size: {:4d} valid_size:{:4d}'.format(ng_data_size, ok_data_size)) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # ---------- # Training # ---------- for epoch in range(opt.n_epochs): # for i, (imgs, _) in enumerate(dataloader): for i, imgs in enumerate(dataloader): # Adversarial ground truths valid = Variable(Tensor(imgs.size(0), 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.size(0), 1).fill_(0.0), requires_grad=False) # Configure input real_imgs = Variable(imgs.type(Tensor)) # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Sample noise as generator input z = Variable(Tensor(np.random.normal(0, 3, (imgs.shape[0], opt.latent_dim)))) # Generate a batch of images gen_imgs = generator(z) # Loss measures generator's ability to fool the discriminator aa = discriminator(gen_imgs) g_loss = adversarial_loss(aa, valid) g_loss.backward() optimizer_G.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples bb = discriminator(real_imgs) real_loss = adversarial_loss(bb, valid) # 此处需要注意,detach()是为了截断梯度流,不计算生成网络的损失, # 因为d_loss包含了fake_loss,回传的时候如果不做处理,默认会计算generator的梯度, # 而这里只需要计算判别网络的梯度,更新其权重值,生成网络保持不变即可。 fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()) ) batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
上面是原始图片,下面是生成的图片,从开始的噪声,到慢慢有点样子,还没训练完,由于我的显卡比较小,GTX1660Ti,6G显存,所以将原始图片从800x800压缩到了128x128,可能影响了效果,没关系,后面还可以优化,包括将全连接网络改为卷积的,图片设置大点,等等。
读到这里,这篇“怎么用GAN训练自己数据生成新的图片”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。