这篇文章主要介绍“pytorch transforms图像增强怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“pytorch transforms图像增强怎么实现”文章能帮助大家解决问题。
本文基于的是pytorch3.7.1
深度学习是由数据驱动的,而数据的数量和分布对于模型的优劣具有决定性作用,所以我们需要对数据进行一定的预处理以及数据增强,用于提升模型的泛化能力。
一般来说深度学习神经网络训练前都需要做数据增强 (Data Augmentation) 又称为数据增广、数据扩增,它是对 训练集 进行变换,使训练集更丰富,从而让模型更具 泛化能力。
显示图片,并读取图片大小
from torchvision import transforms from PIL import Image # 用于读取图片 import matplotlib.pyplot as plt # 用于显示图片 image_path = './dog.jpg' image = Image.open(image_path) plt.imshow(image) print(image.size) plt.show()
主要用于调整PILImage对象的尺寸大小,图片短边缩放至x,长宽比保持不变
将图片短边缩放至x,长宽比保持不变,上述图片执行transforms.Resize(300)
from torchvision import transforms from PIL import Image # 用于读取图片 import matplotlib.pyplot as plt # 用于显示图片 # 图片显示,打印图片大小 image_path = './dog.jpg' image = Image.open(image_path) resize = transforms.Resize(300) image1 = resize(image) plt.imshow(image1) print(image1.size) plt.show()
同时指定图片长宽,这样会改变长宽比例但是不是裁剪,可以恢复
from torchvision import transforms from PIL import Image # 用于读取图片 import matplotlib.pyplot as plt # 用于显示图片 # 图片显示,打印图片大小 image_path = './dog.jpg' image = Image.open(image_path) resize = transforms.Resize([512, 300]) image1 = resize(image) plt.imshow(image1) print(image1.size) plt.show()
测试代码
from torchvision import transforms from PIL import Image # 用于读取图片 import matplotlib.pyplot as plt # 用于显示图片 # 图片显示,打印图片大小 image_path = './dog.jpg' image = Image.open(image_path) w, h = image.size resize = transforms.Resize([512, 300]) image1 = resize(image) resize2 = transforms.Resize([h, w]) image2 = resize2(image1) plt.imshow(image2) print(image2.size) plt.show()
注意这里要使用transforms.Resize([h, w])
作用:中心裁剪图片
主要参数:size,表示需要裁剪的图片大小
代码示例:
from torchvision import transforms from PIL import Image import matplotlib.pyplot as plt transform = transforms.CenterCrop(512) image_path= "./dog.jpg" image = Image.open(image_path) image1 = transform(image) plt.imshow(image1) print(image1.size) plt.show() image1.save('./dog_clipping.jpg')
主要参数:
size:为需要裁剪的图片大小
padding:设置填充大小
大小为a:表示上下左右都填充a个元素
大小为(a, b):表示左右填充a个元素,上下填充b个元素
大小为(a, b, c, d):表示左上右下填充a, b, c, d个元素
pad_if_needed:若图像小于设定 size,则填充,此时该项需要设置为 True
padding_mode:填充模式,主要有四种
constant:像素值由 fill 设定。
edge:像素值由图像边缘像素决定。
reflect:镜像填充,最后一个像素不镜像,例如 [1, 2, 3, 4] → [3, 2, 1, 2, 3, 4, 3, 2]。
symmetric:镜像填充,最后一个像素镜像,例如 [1, 2, 3, 4] → [2, 1, 1, 2, 3, 4, 4, 3]。
fill:当填充模式为padding_mode的填充值
代码示例:
from torchvision import transforms import matplotlib.pyplot as plt from PIL import Image transform = transforms.RandomCrop(size=(512, 512), padding=50, pad_if_needed=True, fill=0,padding_mode="constant") image_path = "./dog.jpg" image = Image.open(image_path) random_crop_image = transform(image) print(random_crop_image.size) plt.imshow(random_crop_image) plt.show() random_crop_image.save("./random_crop_image.jpg")
RandomResizedCrop(size,scale=(0.08,1.0),ratio=(3/4,4/3),interpolation)
将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为制定的大小;
主要参数:
size:为最终图片要resize的大小
scale:为随机采样最少要覆盖原图的比例,在resize前
ratio:为随机采样宽高的比例,也在resize前
interpolation:插值方法
代码示例:
from torchvision import transforms import matplotlib.pyplot as plt from PIL import Image transform = transforms.RandomResizedCrop(size=(256, 256), scale=(0.08, 1), ratio=(3/ 4, 4/3), interpolation=Image.NEAREST) image_path = "./dog.jpg" image = Image.open(image_path) random_resize_crop_image = transform(image) print(random_resize_crop_image.size) plt.imshow(random_resize_crop_image) plt.show() random_resize_crop_image.save("./dog_random_resize_crop.jpg")
p为旋转的概率
代码示例:
from torchvision import transforms import matplotlib.pyplot as plt from PIL import Image transform = transforms.RandomHorizontalFlip(p=0.7) image_path = "./dog.jpg" image = Image.open(image_path) RandomHorizontalFlip_image = transform(image) print(RandomHorizontalFlip_image.size) plt.imshow(RandomHorizontalFlip_image) plt.show() RandomHorizontalFlip_image.save("./RandomHorizontalFlip_image.jpg")
代码示例
from torchvision import transforms import matplotlib.pyplot as plt from PIL import Image transform = transforms.RandomVerticalFlip(p=0.8) image_path = "./dog.jpg" image = Image.open(image_path) RandomVerticalFlip_image = transform(image) print(RandomVerticalFlip_image.size) plt.imshow(RandomVerticalFlip_image) plt.show() RandomVerticalFlip_image.save("./RandomVerticalFlip_image.jpg")
主要参数:
degrees:旋转角度。
当为 a 时,在 (-a, a) 之间随机选择旋转角度。
当为 (a, b) 时,在 (a, b) 之间随机选择旋转角度。
resample:重采样方法。
expand:是否扩大图片,以保持原图信息。
center:旋转点设置,默认中心旋转
代码示例:
from torchvision import transforms import matplotlib.pyplot as plt from PIL import Image transform = transforms.RandomRotation(degrees=90,resample=False, expand=True, center=None, fill=0) image_path = "./dog.jpg" image = Image.open(image_path) RandomRotation_image = transform(image) print(RandomRotation_image.size) plt.imshow(RandomRotation_image) plt.show() RandomRotation_image.save("./RandomRotation_image.jpg")
关于“pytorch transforms图像增强怎么实现”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。