这篇文章主要介绍了R语言高效的操作技巧有哪些的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇R语言高效的操作技巧有哪些文章都会有所收获,下面我们一起来看看吧。
R默认提示的语言有的人是英文,有的人是中文,这是因为每个人系统默认语言不同,可以通过下面方式进行修改
Sys.getlocale() #显示系统语言 Sys.setenv(LANG="en") # 更换默认语言为英文
可以使用memory.size() #获取内存大小,不过该函数值只是和windows系统。
memory.size() #获取内存大小 [1] 341
> object.size(mtcars) 7208 bytes > object.size(mtcars)/1024 #以kb显示 7 bytes
默认回车是运行代码,在Rstudio中有自动补齐,比如定义一个函数,直接自动补齐了{},回车就运行了,可以使用shift+enter #换行
function(x,y) { }
默认赋值完,直接敲变量名就打印数据,可以利用下面方式一步完成两个操作。
(x <- runif(10)) [1] 0.5795985 0.4661326 0.9730974 0.6697417 0.2431985 0.3988545 0.4064351 0.8403910 [9] 0.3136191 0.9979925
如果想查看R函数的源代码,直接输入函数名,不加括号即可。
> mean function (x, ...) UseMethod("mean") <bytecode: 0x0000023e3b8db998> <environment: namespace:base>
如果不设置R镜像,每次安装R包是都会弹出选择框,可以在安装之前通过函数进行设置,使用chooseCRANmirror()函数,给定ind选项一个数值即可。数值代表镜像编号。
> chooseCRANmirror() Secure CRAN mirrors 1: 0-Cloud [https] 2: Australia (Canberra) [https] 3: Australia (Melbourne 1) [https] 4: Australia (Melbourne 2) [https] 5: Australia (Perth) [https] 6: Austria [https] 7: Brazil (BA) [https] 8: Brazil (PR) [https] 9: Brazil (RJ) [https] 10: Brazil (SP 1) [https] 11: Brazil (SP 2) [https] 12: Bulgaria [https] 13: Canada (MB) [https] 14: Chile (Santiago) [https] 15: China (Beijing 2) [https] 16: China (Hefei) [https] 17: China (Hong Kong) [https] 18: China (Guangzhou) [https] > chooseCRANmirror(ind = 18)
默认R显示1000行数据,如果想显示更多,可以通过设置max.print选项。
> options('max.print') $max.print [1] 1000 > options('max.print'=2000) > options('max.print') $max.print [1] 2000
默认R显示7为小数,如果想默认保留两位小数,可以通过设置digits选项。
> options('digits') $digits [1] 7 > options('digits'=2) > options('digits') $digits [1] 2
使用管道让代码更加简洁,无需定义过多中间变量。R中的管道符号为“%>%”如果要使用管道,需要加载magrittr包。其实Rstudio出的各种包都默认支持管道,如果加载了tidyverse包也是可以。
> library(magrittr) > library(ggplot2) > mtcars %>% ggplot(aes(x=cyl,y=mpg,group=cyl))+geom_boxplot()
有些时候记不住列名,或者容易拼错,想要列名也能够自动补齐,可以使用attach函数,这样每一列就变成一个独立的变量。
attach(mtcars) > cyl [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4 > mpg [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4 [17] 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7 15.0 21.4
如果一些包经常使用,想要启动R之后自动加载,可以在配置文件中进行设置,例如每期启动R,自动加载ggplot2包。
file.edit("~/.Rprofile") .First <- function() { library(ggplot2) }
默认R包的加载目录在.libPaths()目录中,当然可以为其添加更多的路径。
> .libPaths() [1] "C:/Users/genom/Documents/R/win-library/4.0" [2] "C:/Program Files/R/R-4.0.3/library" > .libPaths(new = "C:/Users/genom/Desktop/nparFiles/") > .libPaths() [1] "C:/Users/genom/Desktop/nparFiles" "C:/Program Files/R/R-4.0.3/library"
如果需要将一台设备安装的R包,在另外一台设备上安装,首先保存A设备上的R包名字列表,在另外一台设备上写一个循环进行安装。
#在A设备上保存名字列表 oldip <- installed.packages()[,1] save(oldip,file = "installedPacckages.Rdata") #在B设备上进行安装; load("installedPacckages.Rdata") newip <- installed.packages()[,1] for (i in setdiff(oldip,newip)) { install.packages(i) }
如果想查看一个R包中全部函数,可以使用下面的语句。
ls(package:base)
如果加载R包,还想使用其中的函数,需要使用“包名字::函数名”的方式。
dplyr::filter()
在绘图的时候,想要快速设置几个不同的颜色,又嫌生成颜色比较麻烦。可以使用rainbow()函数,给定一个数据,快速生成颜色。
> rainbow(6) [1] "#FF0000" "#FFFF00" "#00FF00" "#00FFFF" "#0000FF" "#FF00FF"
前面介绍了attach函数可以将每一列变成一个单独变量,但这种方式并不推荐,因为会让变量环境很混乱。可以使用一个特殊管道符"%$%"实现同样的效果,我称之为把数据“炸开”
> library(magrittr) Warning message: 程辑包‘magrittr'是用R版本3.6.3 来建造的 > women %$% plot(weight,height)
example函数会帮助运行R帮助文档中的代码,有时候想看一个函数如何使用,可以直接运行这个example函数。
> library(pheatmap) > example("pheatmap") phetmp> # Create test matrix phetmp> test = matrix(rnorm(200), 20, 10) phetmp> test[1:10, seq(1, 10, 2)] = test[1:10, seq(1, 10, 2)] + 3 phetmp> test[11:20, seq(2, 10, 2)] = test[11:20, seq(2, 10, 2)] + 2 phetmp> test[15:20, seq(2, 10, 2)] = test[15:20, seq(2, 10, 2)] + 4 phetmp> colnames(test) = paste("Test", 1:10, sep = "") phetmp> rownames(test) = paste("Gene", 1:20, sep = "") phetmp> # Draw heatmaps phetmp> pheatmap(test)
想统计一条代码运行时间,可以使用system.time()函数
> system.time(runif(100000000)) 用户 系统 流逝 2.75 0.08 2.83
R有一套自己的内存回收机制,因此,即使删除了变量,内存不会立即变化,可以使用gc()函数释放内存。
> memory.size() [1] 297.56 > rm(list = ls()) > memory.size() [1] 298.54 > gc() used (Mb) gc trigger (Mb) max used (Mb) Ncells 1384255 74.0 4046672 216.2 4046672 216.2 Vcells 4288164 32.8 27057220 206.5 33821525 258.1 > memory.size() [1] 255.5
#显示全部变量内容 > ls() #删除 > rm(list=ls()) #释放内存 > gc()
如果不小心将内置数据集删除了,或者新定义同名变量,就会替换原有数据集。
head(mtcars) mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 > mtcars=1:10 > mtcars [1] 1 2 3 4 5 6 7 8 9 10 > data("mtcars") > head(mtcars) mpg cyl disp hp drat wt qsec vs am gear carb Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 >
R函数的选项参数非常多,如果每次都调出帮助文档很麻烦,可以使用args()函数,快速打印出函数的选项参数。
> args(heatmap) function (x, Rowv = NULL, Colv = if (symm) "Rowv" else NULL, distfun = dist, hclustfun = hclust, reorderfun = function(d, w) reorder(d, w), add.expr, symm = FALSE, revC = identical(Colv, "Rowv"), scale = c("row", "column", "none"), na.rm = TRUE, margins = c(5, 5), ColSideColors, RowSideColors, cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc), labRow = NULL, labCol = NULL, main = NULL, xlab = NULL, ylab = NULL, keep.dendro = FALSE, verbose = getOption("verbose"), ...) NULL
关于“R语言高效的操作技巧有哪些”这篇文章的内容就介绍到这里,感谢各位的阅读!相信大家对“R语言高效的操作技巧有哪些”知识都有一定的了解,大家如果还想学习更多知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。