这篇文章主要介绍“Python Numpy中ndarray的常见操作方法有哪些”,在日常操作中,相信很多人在Python Numpy中ndarray的常见操作方法有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python Numpy中ndarray的常见操作方法有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
Numpy中主要使用ndarray来处理N维数组,Numpy中的大部分属性和方法都是为ndarray服务的,所以掌握Numpy中ndarray的常见操作非常有必要!
NumPy的主要对象是同构多维数组。它是一个元素表(通常是数字),所有类型都相同,由非负整数元组索引。在NumPy维度中称为轴 。
下面所示的例子中,数组有2个轴。第一轴的长度为2,第二轴的长度为3。
[[ 1., 0., 0.], [ 0., 1., 2.]]
ndarray.ndim : 数组的轴(维度)的个数。在Python世界中,维度的数量被称为rank。
ndarray.shape :数组的维度。这是一个整数的元组,表示每个维度中数组的大小。对于有 n 行和 m 列的矩阵,shape 将是 (n,m)。因此,shape 元组的长度就是rank或维度的个数 ndim。
ndarray.size :数组元素的总数。这等于 shape 的元素的乘积。
ndarray.dtype :一个描述数组中元素类型的对象。可以使用标准的Python类型创建或指定dtype。另外NumPy提供它自己的类型。例如numpy.int32、numpy.int16和numpy.float64。
ndarray.itemsize :数组中每个元素的字节大小。例如,元素为 float64 类型的数组的 itemsize 为8(=64/8),而 complex32 类型的数组的 itemsize 为4(=32/8)。它等于 ndarray.dtype.itemsize 。
>>> import numpy as np >>> a = np.arange(15).reshape(3, 5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14]]) >>> a.shape (3, 5) >>> a.ndim 2 >>> a.dtype.name 'int64' >>> a.itemsize 8 >>> a.size 15 >>> type(a) <type 'numpy.ndarray'> >>> b = np.array([6, 7, 8]) >>> b array([6, 7, 8]) >>> type(b) <type 'numpy.ndarray'>
在同一个ndarray中,存储的是同一类型的数据,ndarray常见的数据类型包括:
## ndarray reshape操作 array_a = np.array([[1, 2, 3], [4, 5, 6]]) print(array_a, array_a.shape) array_a_1 = array_a.reshape((3, 2)) print(array_a_1, array_a_1.shape) # note: reshape不能改变ndarray中元素的个数,例如reshape之前为(2,3),reshape之后为(3,2)/(1,6)... ## ndarray转置 array_a_2 = array_a.T print(array_a_2, array_a_2.shape) ## ndarray ravel操作:将ndarray展平 a.ravel() # returns the array, flattened array([ 1, 2, 3, 4, 5, 6 ]) 输出: [[1 2 3] [4 5 6]] (2, 3) [[1 2] [3 4] [5 6]] (3, 2) [[1 4] [2 5] [3 6]] (3, 2)
astype(dtype[, order, casting, subok, copy]):修改ndarray中的数据类型。传入需要修改的数据类型,其他关键字参数可以不关注。
array_a = np.array([[1, 2, 3], [4, 5, 6]]) print(array_a, array_a.dtype) array_a_1 = array_a.astype(np.int64) print(array_a_1, array_a_1.dtype) 输出: [[1 2 3] [4 5 6]] int32 [[1 2 3] [4 5 6]] int64
NumPy主要通过np.array()
函数来创建ndarray数组。
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
也可以在创建时显式指定数组的类型:
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
也可以通过使用np.random.random
函数来创建随机的ndarray数组。
>>> a = np.random.random((2,3)) >>> a array([[ 0.18626021, 0.34556073, 0.39676747], [ 0.53881673, 0.41919451, 0.6852195 ]])
通常,数组的元素最初是未知的,但它的大小是已知的。因此,NumPy提供了几个函数来创建具有初始占位符内容的数组。这就减少了数组增长的必要,因为数组增长的操作花费很大。
函数zeros
创建一个由0组成的数组,函数 ones
创建一个完整的数组,函数empty
创建一个数组,其初始内容是随机的,取决于内存的状态。默认情况下,创建的数组的dtype是 float64 类型的。
>>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
为了创建数字组成的数组,NumPy提供了一个类似于range
的函数,该函数返回数组而不是列表。
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
与许多矩阵语言不同,乘积运算符*
在NumPy数组中按元素进行运算。矩阵乘积可以使用@
运算符(在python> = 3.5中)或dot
函数或方法执行:
>>> A = np.array( [[1,1], ... [0,1]] ) >>> B = np.array( [[2,0], ... [3,4]] ) >>> A * B # elementwise product array([[2, 0], [0, 4]]) >>> A @ B # matrix product array([[5, 4], [3, 4]]) >>> A.dot(B) # another matrix product array([[5, 4], [3, 4]])
某些操作(例如+=
和 *=
)会更直接更改被操作的矩阵数组而不会创建新矩阵数组。
>>> a = np.ones((2,3), dtype=int) >>> b = np.random.random((2,3)) >>> a *= 3 >>> a array([[3, 3, 3], [3, 3, 3]]) >>> b += a >>> b array([[ 3.417022 , 3.72032449, 3.00011437], [ 3.30233257, 3.14675589, 3.09233859]]) >>> a += b # b is not automatically converted to integer type Traceback (most recent call last): ... TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
当使用不同类型的数组进行操作时,结果数组的类型对应于更一般或更精确的数组(称为向上转换的行为)。
>>> a = np.ones(3, dtype=np.int32) >>> b = np.linspace(0,pi,3) >>> b.dtype.name 'float64' >>> c = a+b >>> c array([ 1. , 2.57079633, 4.14159265]) >>> c.dtype.name 'float64' >>> d = np.exp(c*1j) >>> d array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j, -0.54030231-0.84147098j]) >>> d.dtype.name 'complex128'
许多一元操作,例如计算数组中所有元素的总和,都是作为ndarray
类的方法实现的。
>>> a = np.random.random((2,3)) >>> a array([[ 0.18626021, 0.34556073, 0.39676747], [ 0.53881673, 0.41919451, 0.6852195 ]]) >>> a.sum() 2.5718191614547998 >>> a.min() 0.1862602113776709 >>> a.max() 0.6852195003967595
默认情况下,这些操作适用于数组,就像它是一个数字列表一样,无论其形状如何。但是,通过指定axis 参数,您可以沿数组的指定轴应用操作:
>>> b = np.arange(12).reshape(3,4) >>> b array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> >>> b.sum(axis=0) # 计算每一列的和 array([12, 15, 18, 21]) >>> >>> b.min(axis=1) # 计算每一行的和 array([0, 4, 8]) >>> >>> b.cumsum(axis=1) # cumulative sum along each row array([[ 0, 1, 3, 6], [ 4, 9, 15, 22], [ 8, 17, 27, 38]]) 解释:以第一行为例,0=0,1=1+0,3=2+1+0,6=3+2+1+0
一维的数组可以进行索引、切片和迭代操作的,就像列表和其他Python序列类型一样。
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # 等价于 a[0:6:2] = -1000; 从0到6的位置, 每隔一个设置为-1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, fan 216, 343, 512, 729]) >>> a[ : :-1] # 将a反转 array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000])
多维的数组每个轴可以有一个索引。这些索引以逗号分隔的元组给出:
>>> b array([[ 0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33], [40, 41, 42, 43]]) >>> b[2,3] 23 >>> b[0:5, 1] # each row in the second column of b array([ 1, 11, 21, 31, 41]) >>> b[ : ,1] # equivalent to the previous example array([ 1, 11, 21, 31, 41]) >>> b[1:3, : ] # each column in the second and third row of b array([[10, 11, 12, 13], [20, 21, 22, 23]]) >>> b[-1] # the last row. Equivalent to b[-1,:] array([40, 41, 42, 43])
几个数组可以沿不同的轴堆叠在一起,例如:np.vstack()
函数和np.hstack()
函数
>>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vstack((a,b)) array([[ 8., 8.], [ 0., 0.], [ 1., 8.], [ 0., 4.]]) >>> np.hstack((a,b)) array([[ 8., 8., 1., 8.], [ 0., 0., 0., 4.]])
column_stack()
函数将1D数组作为列堆叠到2D数组中。
>>> from numpy import newaxis >>> a = np.array([4.,2.]) >>> b = np.array([3.,8.]) >>> np.column_stack((a,b)) # returns a 2D array array([[ 4., 3.], [ 2., 8.]]) >>> np.hstack((a,b)) # the result is different array([ 4., 2., 3., 8.]) >>> a[:,newaxis] # this allows to have a 2D columns vector array([[ 4.], [ 2.]]) >>> np.column_stack((a[:,newaxis],b[:,newaxis])) array([[ 4., 3.], [ 2., 8.]]) >>> np.hstack((a[:,newaxis],b[:,newaxis])) # the result is the same array([[ 4., 3.], [ 2., 8.]])
使用hsplit()
,可以沿数组的水平轴拆分数组,方法是指定要返回的形状相等的数组的数量,或者指定应该在其之后进行分割的列:
同理,使用vsplit()
,可以沿数组的垂直轴拆分数组,方法同上。
################### np.hsplit ################### >>> a = np.floor(10*np.random.random((2,12))) >>> a array([[ 9., 5., 6., 3., 6., 8., 0., 7., 9., 7., 2., 7.], [ 1., 4., 9., 2., 2., 1., 0., 6., 2., 2., 4., 0.]]) >>> np.hsplit(a,3) # Split a into 3 [array([[ 9., 5., 6., 3.], [ 1., 4., 9., 2.]]), array([[ 6., 8., 0., 7.], [ 2., 1., 0., 6.]]), array([[ 9., 7., 2., 7.], [ 2., 2., 4., 0.]])] >>> np.hsplit(a,(3,4)) # Split a after the third and the fourth column [array([[ 9., 5., 6.], [ 1., 4., 9.]]), array([[ 3.], [ 2.]]), array([[ 6., 8., 0., 7., 9., 7., 2., 7.], [ 2., 1., 0., 6., 2., 2., 4., 0.]])] >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) ################### np.vsplit ################### >>> np.vsplit(x, 2) [array([[[0., 1.], [2., 3.]]]), array([[[4., 5.], [6., 7.]]])]
到此,关于“Python Numpy中ndarray的常见操作方法有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。