这篇文章主要讲解了“Python爬虫的并发编程如何应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python爬虫的并发编程如何应用”吧!
并发编程是指在一个时间段内,能够执行多个操作的程序设计,通常表现为程序中有多个任务同时启动,可以运行并且相互之间不会产生影响。并发编程的好处是可以提高程序的性能和响应能力。
爬虫程序是典型的 I/O 密集型任务,对于 I/O 密集型任务来说,多线程和异步 I/O 都是很好的选择,因为当程序的某个部分因 I/O 操作阻塞时,程序的其他部分仍然可以运转,这样我们不用在等待和阻塞中浪费大量的时间。
我们首先来看单线程版本的爬虫程序。这个爬虫程序使用了requests
库获取 JSON 数据,并通过open
函数将图片保存到本地。
""" example04.py - 单线程版本爬虫 """ import os import requests def download_picture(url): filename = url[url.rfind('/') + 1:] resp = requests.get(url) if resp.status_code == 200: with open(f'images/beauty/{filename}', 'wb') as file: file.write(resp.content) def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') for page in range(3): resp = requests.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status_code == 200: pic_dict_list = resp.json()['list'] for pic_dict in pic_dict_list: download_picture(pic_dict['qhimg_url']) if __name__ == '__main__': main()
在 macOS 或 Linux 系统上,我们可以使用time
命令来了解上面代码的执行时间以及 CPU 的利用率,如下所示。
time python3 example04.py
下面是单线程爬虫代码在我的电脑上执行的结果。
python3 example04.py 2.36s user 0.39s system 12% cpu 21.578 total
这里我们只需要关注代码的总耗时为21.578
秒,CPU 利用率为12%
。
我们使用之前讲到过的线程池技术,将上面的代码修改为多线程版本。
""" example05.py - 多线程版本爬虫 """ import os from concurrent.futures import ThreadPoolExecutor import requests def download_picture(url): filename = url[url.rfind('/') + 1:] resp = requests.get(url) if resp.status_code == 200: with open(f'images/beauty/{filename}', 'wb') as file: file.write(resp.content) def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') with ThreadPoolExecutor(max_workers=16) as pool: for page in range(3): resp = requests.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status_code == 200: pic_dict_list = resp.json()['list'] for pic_dict in pic_dict_list: pool.submit(download_picture, pic_dict['qhimg_url']) if __name__ == '__main__': main()
执行如下所示的命令。
time python3 example05.py
代码的执行结果如下所示:
python3 example05.py 2.65s user 0.40s system 95% cpu 3.193 total
我们使用aiohttp
将上面的代码修改为异步 I/O 的版本。为了以异步 I/O 的方式实现网络资源的获取和写文件操作,我们首先得安装三方库aiohttp
和aiofile
。
pip install aiohttp aiofile
下面是异步 I/O 版本的爬虫代码。
""" example06.py - 异步I/O版本爬虫 """ import asyncio import json import os import aiofile import aiohttp async def download_picture(session, url): filename = url[url.rfind('/') + 1:] async with session.get(url, ssl=False) as resp: if resp.status == 200: data = await resp.read() async with aiofile.async_open(f'images/beauty/{filename}', 'wb') as file: await file.write(data) async def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') async with aiohttp.ClientSession() as session: tasks = [] for page in range(3): resp = await session.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status == 200: pic_dict_list = (await resp.json())['list'] for pic_dict in pic_dict_list: tasks.append(asyncio.ensure_future(download_picture(session, pic_dict['qhimg_url']))) await asyncio.gather(*tasks) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
执行如下所示的命令。
time python3 example06.py
代码的执行结果如下所示:
python3 example06.py 0.92s user 0.27s system 290% cpu 0.420 total
相对于单线程版本的爬虫程序,多线程版本和异步 I/O 版本的爬虫程序在执行上的时间上有了显著的提升,而且异步 I/O 版本的爬虫程序表现最佳。
感谢各位的阅读,以上就是“Python爬虫的并发编程如何应用”的内容了,经过本文的学习后,相信大家对Python爬虫的并发编程如何应用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。