一、简介
celery是异步任务队列框架,支持实时处理消息任务,和定时处理消息任务.
架构图:
组件说明:
producer: 调用celery api,函数,装饰器,生成task,放入消息队列的都是生产者
celery beat: 任务调度器,beat进程读取配置文件,周期性的将配置文件中需要执行的任务放入队列
broker: 消息代理中间件,task任务存入队列,供worker取出执行
worker: 执行任务的消费者,可以开启多个线程执行
backend: 任务处理完后保存状态信息和结果,以供查询
二、简单使用
项目结构
app_test.py实例化celery
from celery import Celery
app = Celery('celerydemo',include=['celerydemo.tasks'])
app.config_from_object('celerydemo.celeryconfig')
if name == 'main':
app.start()
创建任务tasks.py
import time
from celerydemo.app_test import app
@app.task
def add(x,y):
time.sleep(1)
return x+y
添加配置文件celeryconfig.py
BROKER_URL = 'redis://:123456@127.0.0.1:6379/0'
CELERY_RESULT_BACKEND = 'redis://:123456@127.0.0.1:6379/0'
CELERY_TASK_SERIALIZER = 'msgpack'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_TASK_RESULT_EXPIRES = 60 60 24
CELERY_ACCEPT_CONTENT = ['json', 'msgpack']
创建worker消费者线程
celery -A celerydemo.app_test worker -l info
调用任务exec.py 放入队列,并输出结果
from celerydemo.tasks import add
import time
t1 = time.time()
#调用delay将任务插入broker队列
r1 = add.delay(1,2)
r2 = add.delay(2,2)
r3 = add.delay(3,2)
r4 = add.delay(4,2)
r5 = add.delay(5,2)
r_list = [r1,r2,r3,r4,r5]
for r in r_list:
while not r.ready():
pass
print(r.result)
t2 = time.time()
print('共耗时: %s' % str(t2-t1))
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。