在Go中处理大规模并行工作流时,可以采用以下策略:
go
关键字。go myFunction()
make
函数。myChannel := make(chan int)
sync.WaitGroup
和chan
来同步goroutines。package main
import (
"fmt"
"sync"
)
func worker(id int, jobs <-chan int, results chan<- int) {
for j := range jobs {
fmt.Printf("Worker %d started job %d\n", id, j)
results <- j * 2
fmt.Printf("Worker %d finished job %d\n", id, j)
}
}
func main() {
const numJobs = 5
jobs := make(chan int, numJobs)
results := make(chan int, numJobs)
var wg sync.WaitGroup
for w := 1; w <= 3; w++ {
wg.Add(1)
go func(id int) {
defer wg.Done()
worker(id, jobs, results)
}(w)
}
for j := 1; j <= numJobs; j++ {
jobs <- j
}
close(jobs)
wg.Wait()
close(results)
for r := range results {
fmt.Printf("Result: %d\n", r)
}
}
package main
import (
"fmt"
"sync"
)
func stage1(in <-chan int, out chan<- int) {
for i := range in {
out <- i * 2
}
}
func stage2(in <-chan int, out chan<- int) {
for i := range in {
out <- i + 1
}
}
func main() {
input := make(chan int)
output := make(chan int)
var wg sync.WaitGroup
wg.Add(2)
go func() {
defer wg.Done()
stage1(input, output)
}()
go func() {
defer wg.Done()
stage2(output, input)
}()
input <- 1
input <- 2
input <- 3
close(input)
wg.Wait()
close(output)
for r := range output {
fmt.Println(r)
}
}
github.com/panjf2000/ants
(一个高性能的goroutine池库)和github.com/asynkron/protoactor-go
(一个高性能的actor模型库)。这些库提供了额外的功能和优化,可以帮助你更好地处理大规模并行工作流。通过结合这些策略,你可以在Go中有效地处理大规模并行工作流。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。