下图是使用高斯模糊和未使用高斯模糊的效果图对比
正常图片
高斯模糊后
1、标准高斯模糊
原理:
每个像素周围对应的像素乘以对应的算子,然后除以算子的综合
算子为
1 2 1
2 4 2
1 2 1
fragment shader
varying vec2 M_coord; varying vec3 M_normal; varying vec3 M_WordPos; uniform sampler2D U_MainTexture; uniform sampler2D U_SubTexture; void main() { // 1 2 1 // 2 4 2 // 1 2 1 int coreSize=3; int halfCoreSize=coreSize/2; float texelOffset=1/100.0; vec4 color = vec4(1.0); float nGaussionCore[9] = float[](1.0, 2.0, 1.0, 2.0, 4.0, 2.0, 6.0, 2.0, 1.0); int index = 0; for(int y=0;y<coreSize;y++) { for(int x=0;x<coreSize;x++) { vec4 currentColor=texture2D(U_MainTexture, M_coord+vec2((-halfCoreSize+x)*texelOffset, (-halfCoreSize+y)*texelOffset)); color += currentColor * nGaussionCore[index++]; } } color /= 16.0; gl_FragColor=color ; }
2、横向模糊
与高斯模糊类似 不过只是模糊横向分量
// 水平高斯模糊 varying vec2 M_coord; varying vec3 M_normal; varying vec3 M_WordPos; uniform sampler2D U_MainTexture; uniform sampler2D U_SubTexture; void main() { int coreSize=3; int halfCoreSize=coreSize/2; float texelOffset=1/100.0; vec4 color = vec4(0.0); float nGaussionCore[5] = float[](0.22, 0.19, 0.12, 0.08, 0.01); color = texture2D(U_MainTexture, M_coord) * nGaussionCore[0]; for (int i=1; i<5; ++i) { color += texture2D(U_MainTexture, vec2(M_coord.x + i * texelOffset, M_coord.y)) * nGaussionCore[i]; color += texture2D(U_MainTexture, vec2(M_coord.x + i * texelOffset, M_coord.y)) * nGaussionCore[i]; } gl_FragColor=color ; }
3、纵向模糊
与高斯模糊类似 不过只是模糊纵向分量
varying vec2 M_coord; varying vec3 M_normal; varying vec3 M_WordPos; uniform sampler2D U_MainTexture; uniform sampler2D U_SubTexture; void main() { int coreSize=3; int halfCoreSize=coreSize/2; float texelOffset=1/100.0; vec4 color = vec4(0.0); float nGaussionCore[5] = float[](0.22, 0.19, 0.12, 0.08, 0.01); color = texture2D(U_MainTexture, M_coord) * nGaussionCore[0]; for (int i=1; i<5; ++i) { color += texture2D(U_MainTexture, vec2(M_coord.x, i * texelOffset + M_coord.y)) * nGaussionCore[i]; color += texture2D(U_MainTexture, vec2(M_coord.x, i * texelOffset + M_coord.y)) * nGaussionCore[i]; } gl_FragColor=color ; }
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。